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Abstract

The time of nonlinear wave collapse is computed numerically for the Hopf equation. Previous numerical
criteria for locating the time of wave collapse are either computationally prohibitive to implement or give erro-
neous results. A new criterion for this purpose is developed analytically using asymptotic analysis of the wave
shock development shortly after breaking. The criterion defines the wave breaking time as the onset of energy
dissipation. This onset results in a singularity in the third derivative of the energy function, the location of which
yields the breaking time. A numerical criterion is formulated from this analytical result and tested against the
exact analytical value of the breaking time. This is done by first solving the differential equation with a finite
difference method. Then, to compensate for numerical error, a moving average method is developed to refine
the energy data. The obtained results give visible convergence to the analytical breaking time as the numerical
mesh is refined.

1 Introduction

Nonlinear wave collapse (breaking) arises in several important contexts. First, in the case of water waves (such
as those described by the nonlinear shallow-water equations, see Stoker [10]), wave collapse is associated with the
time at which a water wave releases its energy and becomes most destructive. This is relevant for the damage that
water waves cause to shipyards and beaches and that tsunami waves do to populated coastlines. Second, for the
case of high Reynolds number fluid flow (such as for the inviscid Euler equations of fluid mechanics), nonlinear wave
collapse (called blow-up in this context) is associated with the onset of turbulence. The mathematical description of
this phenomenon is still an open problem [3]. In this study, a numerical method is introduced which has application
towards predicting the time at which nonlinear wave collapse occurs. The setting is one-dimensional, but the
possibility exists that the approach developed here could be applied to any of the realistic contexts described above.

The first part of this study details the derivation of an analytical criterion for the wave collapse time. A
thorough analytical description of wave-collapse was given by Whitham [14] for the one-dimensional nonlinear
advection equation, of which the Hopf equation the present paper considers is a special case. Using the method
of characteristics, it was shown that the time of wave collapse is characterized by several equivalent properties:
(i) the first intersection of the characteristic lines of invariance, (ii) the time when the slope of the wavefront first
becomes unbounded, and (iii) when a shock first develops in the wavefront. For the advection equation considered
by Whitham [14], these criteria allow for a straightforward analytical determination of the wave breaking time.
However, analytical determination is no longer possible for more complicated equations or for equations in more
spatial dimensions, and one must resort to numerical methods (a perturbative approach is given in [2]). The
translation of these analytical criteria to mathematically correct and readily implementable numerical criteria
is therefore essential for practical purposes. In this study, the results of Whitham [14] are used to develop a new
analytical criterion for locating the time of wave collapse that will guide the implementation of a numerical criterion.

The next part of this study documents the application of a numerical criterion for the wave collapse time.
For linear equations where wave collapse doesn’t occur, numerical solutions have been widely studied in various
contexts (see e.g. [9]). In contrast, there have only been a few attempts to develop numerical methods for predicting
the time of nonlinear wave collapse. The first is a study of the nonlinear shallow water equations by Jeffrey and
Russo [5] that compares results of several numerical strategies used to solve this problem. They used two criteria
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for determining breaking times: (a) solving the differential equation with finite difference methods and checking
for when the spatial gradient exceeded some pre-assigned large value, and (b) solving the differential equation
numerically with the method of characteristics and locating the first intersection of the characteristic lines. While
approach (b) was successful, they found approach (a) to be unsuccessful due to the inability to resolve the steep
wavefront sufficiently accurately. In fact, it was shown in a particular case by Tran and Dritschel [13] that the
criterion used for approach (a) is incorrect and that breaking actually occurs before the wave becomes its steepest.
In this study, we solve the differential equations as in approach (a) but develop a more accurate and ultimately
successful breaking criterion. In the case of the method of characteristics of approach (b), while being an accurate
approach, it is a notoriously complicated procedure to program for nonlinear systems and hasn’t been as widely
applied or well-developed as explicit finite-difference methods, the latter of which are employed in the present study.

Klein and Roidot [6] applied results of asymptotic Fourier analysis to the location of the breaking time for
the Hopf equation. Their criterion for the collapse time was when the singularity in the wave’s complex Fourier
Transform first intersected the real axis. At this time, the rate of decreasing modulus with increasing wavenum-
ber of the Fourier coefficients changed from exponential to algebraic, indicative of a singularity in the function’s
spatial derivative. Their method involves first numerically integrating the time evolution equations for the Fourier
coefficients, then applying a least-squares fitting of these coefficients’ modulus to an asymptotic formula valid for
large Fourier wavenumbers. Their computed results for the breaking time agreed with the analytical solution, but
their numerical method was computationally costly for the accuracy of their computed breaking times. Their fitting
procedure was also rather empirical. We attempted in this study to develop a straightforward numerical procedure
implementable on a laptop computer that requires little to no empirical calibration.

2 Analytical Developments

This section describes how we arrived at our analytical results, providing (1) a brief overview of the Hopf equation
and wave collapse mechanics; (2) an asymptotic analysis of the nonlinear wave structure after breaking; (3) a
computation of the wave energy function based upon the asymptotic results; and (4) a moving average method used
to compensate for numerical error.

2.1 Hopf Equation

The Hopf equation is a simple prototype model for nonlinear wave breaking and one-dimensional turbulence. It
arises as the inviscid limit of the Burgers equation or the pressureless Navier-Stokes equation [14]. It can also
be obtained from the nonlinear shallow water equations of uniform water depth when one of the two Riemann
invariants is constant (i.e. simple-wave motion [10]). The Hopf equation is:

ut + uux = 0, (1)

where u = u(x, t) is a velocity in the above settings. For initial data u(x, 0) = f(x), the general solution to (1) is
given implicitly by:

u(x, t) = f(ξ),

x = ξ + t u.
(2)

We assume the initial data f to be C3 and that
∫∞
−∞ |f(x)|dx < ∞. Here, ξ parametrizes a characteristic line;

because function u(x, t) is constant along a characteristic line, each value of ξ can be associated to a unique function
value. The time at which two distinct characteristics obtain the same position x is called the breaking (collapse)
time; at this time, u(x, t) becomes a multivalued function. The breaking time tB > 0 is given by tB = −1/f ′(ξB),
where ξB is obtained from f ′(ξB) = infξ f

′(ξ); the function first breaks at a negatively sloping inflection point. The
value of the function at this point is uB = f(ξB), and the position at which it breaks is xB = ξB + uBtB .

Although, for t > tB , the u(x, t) defined by (2) becomes a multivalued function, a weak single-valued solution
u(x, t) to (1) can be obtained by imposing a discontinuous jump bridging two characteristics adjoining the multival-
ued portion of the curve; this discontinuity is called a shock and moves along the shock trajectory x = s(t), where
s(tB) = xB gives the original position of the shock. The (Rankine-Hugoniot) conditions that define the propagation
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of the shock position x = s(t) are obtained from the condition that conservation of mass be satisfied:

d

dt

∫ ∞
−∞

u(x, t)dx = 0. (3)

This and other conservation laws such as conservation of energy:

d

dt

∫ ∞
−∞

1

2
u(x, t)2dx = 0, (4)

are satisfied for any differentiable solution to (1), but only one, namely mass (3) can be satisfied when the function
u(x, t) contains a shock. It is shown that requiring that mass (3) be conserved defines the shock propagation.
Splitting the real-line integration interval into (−∞,+∞) = lims−,s+→s(−∞, s−)∪ (s+,+∞), where s−(t) < s(t) <
s+(t), the integral in (3) can be written in the limit for the case of a shock as:

d

dt

(∫ s−(t)

−∞
u(x, t)dx+

∫ ∞
s+(t)

u(x, t)dx

)
=

∫ s−(t)

−∞
ut(x, t)dx+

∫ ∞
s+(t)

ut(x, t)dx−
[
s′+u(s+, t)− s′−u(s−, t)

]
. (5)

But from (1), we have ut = −(u2/2)x in the integrals since x 6= s, so upon integration (5) becomes:

−
[

1

2
u2

]∞
−∞

+

[
1

2
u2

]s+
s−

− s′(t) [u]
s+
s−
≡ 0, (6)

where the left hand side is set to zero because we require mass to be conserved. The first term is assumed to vanish,
so solving for s′(t) yields the Rankine-Hugoniot condition for the speed of shock propagation:

s′(t) =
1

2
[u(s−(t), t) + u(s+(t), t)] ≡ 1

2
[u−(t) + u+(t)] . (7)

In this study, we are concerned with the energy integral in (4) and whether or not it is conserved during shock
propagation. Because we required mass to be conserved for a shock resulting in (7), it turns out that the energy
integral is not conserved. Following the same procedure outlined before yields the following expression for the rate
of change of the energy integral E(t) ≡

∫∞
−∞

1
2u(x, t)2dx:

E′(t) ≡ d

dt

∫ ∞
−∞

1

2
u(x, t)2dx = −s′(t)

[
1

2
u2

]s+
s−

+

[
1

3
u3

]s+
s−

=
1

12

(
[u]

s+
s−

)3

, (8)

which is zero if and only if the function u(x, t) is continuous. Hence, when wave breaking occurs and a shock starts
to develop, the energy integral will start to change from its previously constant value. Equation (8) was analyzed
in detail by Tran and Dritschel [13] for a representative initial profile f(x) = − sinx.

In subsection 2.2, we analyze the asymptotic structure of [u]
s+
s−

in detail to explicitly determine the energy change

given in (8) shortly after the breaking time. Using this asymptotic structure, we define an alternative breaking
criterion that can be used to obtain the breaking time given the energy curve E(t).

2.2 Shock Width

The shock structure of the discontinuous solution to the Hopf equation is examined using asymptotic analysis for
small times after the breaking time. In subsection 2.3, this result is used to determine the energy rate of change
E′(t) for small times after the wave breaks.

It is more convenient to work with a moving coordinate system centered at the breaking point: ζ = ξ − ξB ,
y = x− uBt− ξB , and w(y, t) = u(x, t)− uB , such that yB = ζB = wB = 0. In this moving frame, the solution to
Hopf equation (2) becomes:

w(y, t) = g(ζ),

y = ζ + w t,
(9)
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where g(ζ) ≡ f(ξB + ζ)− uB .
We consider a small characteristic neighborhood of the breaking characteristic ξB such that |ζ| � 1. We have

g(0) = g′′(0) = 0 (by definition and since breaking first occurs at an inflection point), so

g(ζ) ≈ ζg′(0) +
1

6
ζ3g(3)(0) +O(ζ4) ≡ aζ + bζ3 +O(ζ4). (10)

For a positive breaking time tB = −1/a, we assume 0 to be a local minimum of g′ so that a < 0 and b > 0 [4].
Calculated at the shock characteristics, we have ζ → 0 as t→ tB (since the shock width is zero upon the wave first
breaking), so this approximation (10) is valid for t − tB � 1, in a sense made more precise later, and ultimately
allows one to obtain the local energy dissipation rate shortly after the breaking time.

Following Whitham [14], the shock structure in the moving frame y = x−uBt−ξB is determined by the solution
of the following system:

σ(t) = ζL + g(ζL)t = ζR + g(ζR)t, (11)

1

2
(g(ζL) + g(ζR))(ζR − ζL) =

∫ ζR

ζL

g(ζ) dζ, (12)

where ζL < ζR gives the two characteristics of w(ζ) connected by the shock located at y = σ(t) in the moving
frame. The first set of equations (11) comes from specifying (9) at the shock position y = σ(t) and characteristics
ζ = ζL, ζR; the second comes from the Rankine-Hugoniot condition (7) of weak solutions to (1) or the so-called
“equal-area rule” (see Whitham [14] for details). Solution of this system gives the shock trajectory y = σ(t) and
the shock characteristics ζL, ζR, which, using (11) allows us to compute the shock width [u]

s+
s− = [w]

σ+
σ− and finally

the energy change rate in (8).

We solve the system (11)-(12) using approximation (10). Evaluating the right side of (12) gives
∫ ζR
ζL

g(ζ)dζ ≈
a(ζ2

R − ζ2
L)/2 + b(ζ4

R − ζ4
L)/4 +O

(
ζ5
L, ζ

5
R

)
. The left side gives 1

2 [g(ζL) + g(ζR)] (ζR − ζL) ≈ a(ζ2
R − ζ2

L)/2 + b(ζR −
ζL)(ζ3

R + ζ3
L) +O

(
ζ5
L, ζ

5
R

)
, so equation (12) can be rewritten in this limit as:

1

4
b
(
ζ4
R − 2ζ3

RζL + 2ζRζ
3
L − ζ4

L

)
=

1

4
b(ζL + ζR) (ζR − ζL)

3 ≈ O
(
ζ5
L, ζ

5
R

)
.

Since ζL < ζR, we find that:
ζL ≈ −ζR +O

(
ζ2
R

)
. (13)

Now, using (10), the second equation in (11), namely ζR − ζL + t [g(ζR)− g(ζL)] = 0, can be rewritten as:

ζR − ζL + t
[
a(ζR − ζL) + b(ζ3

R − ζ3
L)
]

= (ζR − ζL)
[
1 + at+ bt(ζ2

R + ζRζL + ζ2
L)
]
≈ O

(
ζ4
L, ζ

4
R

)
.

Using (13), we have ζR − ζL ≈ 2ζR +O(ζ2
R) and ζ2

R + ζRζL + ζ2
L ≈ ζ2

R +O(ζ3
R), so (11) reduces to:

ζ2
R ≈ −(1 + at)/bt+O(ζ3

R).

Hence, we obtain:

ζR ≈
√
−1 + at

bt
+O(ζ2

R) ≈

√
t− tB
b t2B

+O(t− tB), t ≥ tB . (14)

The positive root was chosen so that ζL < ζR from (13). From (14), the approximation (10) being valid for
ζR � 1 translates to being valid for small times t − tB > 0 after the breaking time tB = −1/f ′(ξB) such that
t− tB � f (3)(ξB)/

[
6 f ′(ξB)2

]
, since b ≡ f (3)(ξB)/6.

Using the result (14), we can now calculate the shock width [u(x, t)]
x=s+
x=s− = [uB + w(y, t)]

y=σ+
y=σ− = [g(ζ)]ζ=ζRζ=ζL

that develops during a short time after wave breaking. First, in (11), we note that σ(t) = O(ζ2
R), since σ(t) =

ζR + tg(ζR) = ζL + tg(ζL) ≈ − [ζR + tg(ζR)] +O(ζ2
R) = O(ζ2

R) by antisymmetry. Thus, solving (11) gives g(ζL) ≈
−ζL/t+O(ζ2

R) ≈ +ζR/t+O(ζ2
R) and g(ζR) ≈ −ζR/t+O(ζ2

R). Thus, we obtain the asymptotic shock width shortly
after the breaking time tB = −1/f ′(ξB):

[u]s+s− ≈ −2ζR/t+O(ζ2
R) ≈ −2

√
t− tB
b t4B

+O(t− tB), t ≥ tB . (15)

This quantity, of course, is zero for 0 ≤ t ≤ tB . It is important to note that this function is non-analytic at t = tB .
That this is so forms a basis for a new breaking criterion.
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2.3 Energy Dissipation

Using the asymptotic results obtained in subsection 2.2, it is shown that the energy E(t) decreases, where E′(t)
in (8) describes energy dissipation. Asymptotic results for the shock width [u]

s+
s− in (15) show that the energy

dissipation rate E′(t) has a singular second derivative. It is this non-analytic structure of the energy dissipation
rate at the breaking point that will suggest a new method for numerical computation of the breaking time as the
location of this singularity.

Combining (8) and (15) yields the following asymptotic result for the energy derivative:

E′(t) ≈ − 2

3b3/2t6B
(t− tB)3/2 +O

(
(t− tB)2

)
, t ≥ tB . (16)

For 0 ≤ t ≤ tB , the energy dissipation rate is zero.
This result shows that the energy rate of change is negative, so upon wave breaking, the total energy (4) starts

to decrease. Stoker [10] attributes this effect in the nonlinear shallow-water equations as analogous to the onset of
turbulent dissipation that occurs in bore propagation in water waves. In addition, we observe that this function is
non-analytic, which is not obvious if one only considers (8) without studying in more detail the shock width (15).
To see the consequences of this singular nature of the energy function near the breaking time, we compute the third
derivative E(3)(t):

E(3)(t) =

{
0 0 < t < tB
−1

2b3/2t6B
(t− tB)−1/2 0 < t− tB → 0. (17)

This function is shown in Figure 1.

Figure 1: Third derivative of the energy and sketch of smoothed numerical analogue.

Clearly, the energy derivative E(3)(t) jumps from zero to a singularity at t = tB . Given that this function is
continuous (namely, zero) for 0 < t < tB , this drastic change in behavior motivates a redefinition of the breaking
time that can be readily applied given the analytical form of the energy curve:
The breaking time tB is the smallest time tB > 0 at which E(3)(t) displays a singularity.

This is an analytical breaking time criterion that requires an exact form of the curve E(3)(t) to work. In practice,
obtaining E(t) numerically introduces artificial smoothing into the non-analytic energy distribution, particularly if
a finite-difference method is used to solve the Hopf equation (1). A sketch of a smoothed curve representative of
such a numerically obtained distribution is juxtaposed along with the analytical curve (17) in Figure 1. In such
a case, the singularity will be tempered and instead display itself as a prominent local minimum. Because mesh
refinement reduces the amount of artificial diffusion introduced by a finite difference method [7], this prominent
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minimum would be expected to converge to the singularity upon refinement. Thus, we define a numerical breaking
time criterion to use when the energy curve E(t) is obtained numerically:
The numerical breaking time tB is the smallest time tB > 0 at which E(3)(t) displays a local minimum.

This is the main theoretical result of this paper. Its applicability is verified in section 3 for a numerical case
study.

2.4 Moving Averages

The numerical integration of the steep wavefront employed in the following section’s numerical procedure introduces
significant error, so numerically differentiating this distribution three times as required by the breaking criterion
generates large fluctuations in the derivative distribution. A smoothing method is developed to compensate for this
problem. The following two observations are made concerning the form of this error: (i) the error is more or less
distributed randomly above and below the unperturbed optimal energy distribution, and (ii) the error distribution
varies significantly between each grid point on the time axis. Using observations (i) and (ii), we can (i) model
the error distribution analytically using a sinusoid proxy curve and (ii) use as the sinusoidal wavelength the time
discretization scale ∆t (a more careful and less convenient argument might use a statistical formulation rather than
sinusoids, but we suspect that the results would be equivalent). It is shown that this error distribution can be
made negligible upon mesh refinement by replacing the perturbed energy distribution with its “locally averaged”
counterpart.

A unique feature of this problem is that the perturbations vary on the scale of the time discretization. The
advantage of utilizing a custom smoothing method is that, as the time discretization is refined, the smoothed
function converges to the desired unperturbed curve. This convergence occurs as a result of formulating the
averaging window to vanish with the numerical scheme’s time discretization. As the discretization is refined, any
negative effects caused by the smoothing vanish along with the undesired perturbations. This being said, the
method here is certainly open to further theoretical and computational refinement using the existing formalism
developed in e.g. [8].

This situation is formulated in terms of smooth functions. Let the energy distribution obtained from the following
section’s integration procedure be:

E(t) = E0(t) + a0 sin(kt+ φ), (18)

where E0(t) is the unperturbed (i.e. exact) smooth energy curve, a0 is the characteristic amplitude of the distur-
bance, k = k0/∆t is the characteristic wavenumber defined on the scale of the time domain discretization, and φ is
a phase factor. Differentiating this curve three times as required for determining the breaking criterion gives:

E(3)(t) = E
(3)
0 (t)− a0k

3 cos(kt+ φ). (19)

Evidently, as the mesh is refined (or ∆t→ 0), the error term dominates the third derivative of the energy function
(19) as k →∞. This necessitates the development of a smoothing method.

The goal is to make the oscillatory perturbation term disappear by applying to E(3)(t) some “averaging opera-

tion” so that E
(3)
0 (t) is recovered from E(3)(t). We define an averaging operator A[.](t) that integrates the argument

function over a small interval 2∆ centered at time t. The interval 2∆ should be sufficiently large that rapidly oscil-
latory integrands will cancel but small enough to preserve the form of a slowly varying argument function; it should
also depend on the oscillation wavenumber k = k0/∆t as k →∞ to maintain this effect. Using this sinusoidal model
for the error distribution, one can quantify how small or large to make this integration interval. Let the action of
the averaging operator A on a function f(t) be:

A[f ](t) =
1

2∆

∫ ∆

−∆

f(t+ y)dy. (20)

This linear operator can be applied iteratively using a recursive definition: A1[f ](t) = A[f ](t), and An[f ](t) =
A[An−1[f ]](t) for n > 1. It should be noted that if f(t) is defined on the time interval I0 = [0, T ], then the averages
An[f ](t) are defined on the smaller time intervals In = [n∆, T − n∆] due to the nonlocal nature of the operator
A; thus, the n-iterated average is well defined only for n < T/2∆; this is relevant in the numerical implementation
of the averaging procedure. Finally, although using more averaging applications smooths the argument function
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out more, computational cost and “over-smoothing” motivate us to seek a minimal number of applications n of the
averaging operator that will diminish the error distribution in the limit k →∞.

We define conditions ultimately required on the integration half-interval ∆ and the minimum number of averages
n so that the following convergence criterion is satisfied for the averaged energy third derivative as the perturbation
wavelength vanishes:

lim
k→∞

sup
t∈In

∣∣∣An[E(3)](t)− E(3)
0 (t)

∣∣∣ = 0. (21)

This condition requires that we recover our desired energy distribution E0(t) from the averaged distribution An[E](t)
as the wavelength ∆t for the numerical error perturbations vanishes. Using the form of E(3) given in (19), the
linearity of the averaging operator and applying the triangle inequality to the absolute value gives the following two
sufficient conditions that fulfill (21):

lim
k→∞

sup
t∈In

∣∣∣An[E
(3)
0 ](t)− E(3)

0 (t)
∣∣∣ = 0, (22)

lim
k→∞

k3 sup
t∈In
|An[cos(k.+ φ)](t)| = 0. (23)

In this limiting regime, the first condition (22) requires that applying the averaging procedure to the smooth and

slowly varying function E
(3)
0 (t) gives that of the identity, while the second condition (23) requires that the rapidly

oscillating sinusoid of large amplitude k3 vanish when the averaging is applied. In practice, the perturbation

wavelength ∆t is nonzero but small, so satisfaction of these two conditions recovers E
(3)
0 from An[E(3)] to a good

approximation.
Conditions (22) and (23) are evaluated to determine requirements on ∆ and n. It can be shown by induction

that the suprema in (22) and (23) satisfy the following inequalities:

sup
t∈In

∣∣∣An[E
(3)
0 ](t)− E(3)

0 (t)
∣∣∣ ≤ Cn∆2, Cn =

n

6
sup
t∈I0
|E(5)

0 (t)|,

k3 sup
t∈In
|An[cos(k.+ φ)](t)| ≤ k3an, an = a0(sin(k∆)/k∆)n.

Thus, the first condition (22) requires that ∆ → 0 as k → ∞, and the second condition (23) requires that (a)
k∆→∞ and (b) k3−n/∆n → 0 as k →∞. If we set ∆ ≡ k−m, then these conditions require that 0 < m < 1 and
3− n+ nm < 0.

To summarize, in terms of the perturbation wavelength ∆t, the averaging procedure applied to the third energy
derivative is characterized by the following integration half-interval ∆, minimum number of averages n, and averaging
error:

∆ = (∆t)m, 0 < m < 1,

n >
3

1−m
,

sup
t∈In

∣∣∣An[E
(3)
0 ](t)− E(3)

0 (t)
∣∣∣ = O(n∆2), In = [n∆, T − n∆].

(24)

The perturbation amplitude in E(3) after averaging decreases from O
(
(∆t)−3

)
to O

(
(∆t)n−nm−3

)
as ∆t → 0.

Increasing the parameter m requires more averages but reduces the overall averaging error as the time discretization
is refined; if m = 1/2, for example, then the method requires n = 7 averages and yields O(∆t) convergence of the
averaging error. The perturbation amplitude in this case is O

(
(∆t)1/2

)
as ∆t→ 0.

3 Application to Gaussian Wave

In this section, a particular initial wave is studied using the methodology outlined in section 2 to serve as illustration
of the approach and as verification that the analytical theory is consistent.
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3.1 Numerical Details

The following initial wave profile u(x, 0) = f(x) is used for the numerical solution of Hopf equation (1):

f(x) = exp
(
−18(x− 1)2

)
. (25)

This Gaussian of wavelength 1 has amplitude 1 and is centered at x = 1. Such a profile is representative of an
isolated tsunami water wave, for example. The exact breaking time for this profile is tB = e1/2/6 ≈ 0.274787.

The numerical details used in computations are briefly given. The computational spatial interval x : [0, 2 + T ]
and time interval t : [0, T ] are discretized into J and K increments respectively: xj = j∆x, j ∈ {0, 1, ...J} and
tk = k∆t, k ∈ {0, 1, ...K}, where ∆x = (2 + T )/J and ∆t = T/K. Function u(x, t) is evaluated at discrete points
on the space-time grid (xj , tk). Computations were run for total time T = 2tB .

The Hopf equation (1) upon discretization was solved using the Centered Flux-Limiter method developed by Toro
[12] that hybridizes the FORCE and Richtmyer numerical fluxes yielding a second-order accurate TVD numerical
method; the Superbee flux limiter was used (see [12] for details). Transmissive boundary conditions were used at
endpoints of the computational spatial domain.

The energy function E(t) in (4) was obtained by numerically integrating the function data u(xj , tk) using
Simpson’s rule quadrature. Next, the third derivative E(3)(t) was obtained by numerically differentiating the
energy data E(tk). Then, the averaging method in section 2.4 was applied to E(3)(t) for ∆ = (∆t)3/4 and n = 13.
Finally, application of the numerical criterion for breaking introduced in section 2.3 required finding the smallest
time tm at which the function data set achieved a local minimum.

Computations were performed on a laptop with 4 GB RAM and a 2.13 GHz processor. The longest computation
(solving the differential equation) took 23 minutes for J = 2500.

3.2 Results

The numerical solution of Hopf equation (1) and initial condition (25) is compared with the exact analytical solution
(2) given in implicit form in Figure 2. The two functions give good agreement until the occurrence of the breaking
time, at which the numerical solution presents a shock profile while the analytical solution becomes multivalued.

Figure 2: Comparison of analytical solution to numerical solution (J = 2500). Plotted at times t = 0, tB , 2tB .

The energy function (4) is shown in Figure 3. Evidently, it maintains a constant value until a time near the
breaking time, at which point it starts to decrease, in agreement with the analytical result (16).
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Figure 3: Plot of energy function (J = 2500).

Figure 4: Close-up of energy curve in Figure 3.

To see why the smoothing method employed in section 2.4 is necessary, a close-up of the energy curve is shown
in Figure 4. Evidently, small perturbations from the monotonically decreasing energy profile exist on the scale of
each grid point.
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Figure 5: Plot of energy third derivative (J = 2500).

The effect these small perturbations have on the third derivative, shown in Figure 5, is much larger. The
fluctuations make analysis of this curve impossible. It is presumed that this error is due to numerical integration
of the wave after it has broken and become very steep, as in Figure 2.

Figure 6: Averaged third derivative (J = 2500, m = 3/4, n = 13).

The averaged version of this curve is shown in Figure 6. Clearly, the oscillations have been greatly tempered,
and the true function’s profile is much more visible. In particular, a prominent local minimum is evident near the
breaking time. In terms of the analytical result (17), this minimum corresponds to a tempered and smooth version
of the singularity in the energy function’s third derivative.
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Figure 7: Numerical breaking times. Horizontal line indicates analytical breaking time.

The location of this minimum on the time axis has been computed for various spatial step numbers J from
J = 500 to J = 2500 in steps of 100. The results are juxtaposed with the exact value of the breaking time in Figure
7. Evidently, as the mesh is refined, the numerical results give better agreement overall. Although convergence
is not completely monotonic, the accuracy visibly increases with mesh refinement, such that for J = 2500, the
computed time is within 0.5%. However, the convergence is rather slow and could undoubtedly benefit from
sequence acceleration (see e.g. [1]).

4 Summary of Results

In this study, a new approach was described for obtaining the time of nonlinear wave breaking in solutions to the
Hopf equation (1). The motivation for the method comes from an asymptotic result derived in section 2.3 that
shows that the energy function undergoes a singular transition at the breaking time that is clearly visible in the
function’s third derivative. A breaking criterion was formulated and tested numerically in section 3 for a Gaussian
wave profile. To account for numerical error fluctuating on the scale of the discretization that would otherwise
obscure the energy function’s third derivative, an averaging method was developed in section 2.4 that successfully
lessened the magnitude of the error perturbations and recovered a truer approximation to the ideal curve. The
numerical predictions for the breaking time were shown to improve as the numerical discretization was refined,
verifying that the analytical ideas are consistent.

There are several possible applications of these results. First, this approach might be applied to other interesting
one-dimensional systems that also exhibit nonlinear wave breaking and shock formation, such as the nonlinear
shallow-water equations or the equations of gas dynamics. For these systems, the asymptotic results may parallel
those in section 2.2 given that similar formalisms for the Rankine-Hugoniot conditions exist [7]; moreover, finite-
difference methods for these equations’ numerical solution are already well-developed [12]. In addition, the possibility
exists for an application to two- and three-dimensional analogues of the Hopf equation such as the Euler equations
of inviscid fluid dynamics. For these more realistic equations, the time of nonlinear wave-breaking is instead
associated with the onset of turbulence. If this energy-based criterion for nonlinear blowup also applies to this
three-dimensional situation, the approach given here could lead to alternative methods of isolating and studying
the time of turbulence onset.
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