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Detecting and estimating unmodeled transient gravitational wave (GW) signals in noisy data is
a major challenge in GW data analysis. This paper explores a solution that combines spline based
regression with Particle Swarm Optimization for knot placement and directional parameter estima-
tion. First, the estimation of binary black hole merger signals in data from a single GW detector is
used as a testbed problem to quantify the relative performance of several algorithmic design choices.
The method resulting from this study is then adapted to the case of data from a network of geo-
graphically distributed GW detectors. Simulation results show fairly good directional estimates for
black hole mergers, with reasonable fidelity in the reconstruction of both GW polarization wave-
forms, at a signal to noise ratio capped at 15 for any single detector in the network. This promising
performance suggests that the method should be developed further and applied to other types of
GW transients.

I. INTRODUCTION

Gravitational waves are a fundamental prediction of
Einstein’s general theory of relativity [29]. They are per-
turbations in the metric of space-time that propagate
with the speed of light and are sourced by time dependent
changes in mass-energy distribution. GWs have exceed-
ingly weak interaction with matter, making them difficult
to detect. However, being able to meet this challenge
will open up a new way of observing the Universe. This
is expected to revolutionise our understanding of many
hitherto hidden astrophysical phenomena such as the dy-
namics of core-collapse supernovae [20].

A decades-long world-wide effort has been going on
to build instruments capable of directly detecting GWs
incident on Earth from astrophysical sources. (Such an
instrument needs to be able to measure length changes
of ∼ 10−18 m over ∼ 1 km!) This effort crossed a
major milestone recently with the successful demonstra-
tion of the LIGO detectors [1] running stably at their
planned initial sensitivity in coincidence with the French-
Italian Virgo [2] and the German-British GEO600 [16]
detectors. The LIGO detectors are currently undergoing
upgrades[18], with a nominal date of completion in 2015,
that will boost the distance to which an astrophysical
source can be seen by a factor of ∼ 10. The Virgo detec-
tor is undergoing similar upgrades [9] and a comparable
sensitivity cryogenic detector called KAGRA [3] is un-
der construction in Japan. Based on astrophysical rate
estimates of sources, it is believed that these advanced
detectors will be sensitive enough to detect several GW
signals of astrophysical origin per year. By combining
data from a world wide network of detectors, we will be
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able to estimate the location of a GW source on the sky
and its physical parameters [21].

Even with the impressive sensitivity of advanced GW
detectors, a typical GW signal will not stand out from
the instrumental noise background. Sophisticated signal
processing methods must be employed to search for GW
signals in noisy data and estimate their properties. A
particularly hard challenge in GW data analysis is posed
by unmodeled signals whose waveforms are unknown to
us a priori—for example, GWs produced by turbulent
dynamics in core-collapse supernovae [25]. Another ex-
ample is the merger of two black holes where the GW sig-
nal can in principle be calculated from numerical relativ-
ity simulations but where the computational cost makes a
complete coverage of the parameter space of such signals
infeasible [26].

Maximum likelihood estimation under a smoothness
regularization condition [13, 17] is a promising new ap-
proach [23] to the detection and estimation of unmodeled
transient GW signals. This scheme naturally leads to the
regression spline method [14] in which the estimated sig-
nals are cubic spline functions. Finding the best fit sig-
nal in this method is a challenging non-linear and high-
dimensional optimization problem, but this problem can
be successfully addressed [15, 23] using Particle Swarm
Optimization (PSO) [11]. First applications [19] of the
PSO based regression spline method to the estimation
of black hole merger signals in a single detector showed
promising results. A straightforward extension of this
method was made to the case of a network of GW detec-
tors [22].

This paper explores several design choices possible in
the PSO based regression spline approach. We use a set
of performance metrics and extensive simulations, on the
binary black hole merger testbed, to study the impact
of these design choices. A generalization of the resulting
method to coherent network analysis is proposed and pre-
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liminary results are obtained regarding the accuracy of
directional estimation and reconstruction of the GW po-
larization waveforms. We find that the method developed
in this paper performs well and that the time-domain
spline-based approach should be developed further and
applied to a wider variety of GW signals.

The rest of the paper is organized as follows. Sec II pro-
vides a brief review of technical background behind the
PSO based regression spline method. Sec. III describes
the simulation pipeline as well as the metrics used in this
paper for quantifying the performance of the method.
The various design choices possible in this approach are
presented in Sec. IV along with a quantitative study of
their impact on performance. Sec. V presents the gen-
eralization of the final method to the case of network
analysis and preliminary results on its performance. Our
conclusions are contained in Sec. VI.

II. BACKGROUND

A spline is a piecewise polynomial function obey-
ing some smoothness conditions at the junctions (called
knots) where the pieces connect. For a given set of knots,
all splines of a given degree of the polynomial pieces con-
stitute a linear vector space. A convenient basis for this
space is that of B-splines [8], which are themselves lin-
early independent, piecewise polynomials. In the follow-
ing, we will restrict ourselves to the case of cubic splines
defined by a fixed number, k, of knots confined to a finite
time interval [T0 < t1, tk < Tf ], where T0 and Tf denote
the start and end time of a time series data segment from
a single detector.

The set of cubic B-splines is unique for each parti-
tion of the domain (t1 ≤ t2 ≤ ...tk−1 ≤ tk). Further-
more, if the partition is strictly increasing such that
(t1 < t2 < ...tk−1 < tk), then the partition’s corre-
sponding B-splines, and therefore any spline, will by con-
struction be C 2 continuous. In the case that the parti-
tion is uniformly spaced, i.e. ti − ti−1 = ti+1 − ti for
i = 2, ...k − 1, the interior B-splines are shifted copies of
each other, reducing computational time in implementa-
tions of a spline-fitting algorithm.

Splines offer a flexible model to fit a wide variety of
GW signals in noisy, oscillatory data; furthermore the
fact that the set of all splines given a domain partition are
linear combinations of the corresponding B-splines makes
least-squares fitting straightforward: once the partition
P = (t1 < t2 < ...tk−1 < tk) is fixed, it is well known
that the least-squares spline best fitting the data D(t)
can be analytically found by minimizing (1).

R(~α) =

N∑
i=1

D(ti)−
k−3∑
j=1

αBj(ti)

2

(1)

where αj denotes the scalar weightings of the B-Spline
Bj .

In general, however, the effectiveness of splines in fit-
ting transient signals is sensitive to the placement of the
knots. For example, the location of the signal in time is
unknown, so we need to find the partition P such that the
supported domain of the spline [t1, tk] roughly coincides
with the transient signal. The search for a viable par-
tition is a challenging high-dimensional, nonlinear, and
multimodal optimization problem and the effectiveness
of the spline based fitting approach is critically depen-
dent on solving this problem successfully. This is where
the PSO algorithm can play a crucial role for its robust-
ness in the face of these three challenges, relative sim-
plicity, and ease of tuning compared to other nonlinear
optimization/evolutionary algorithms.

PSO aims to minimize a scalar fitness function f(~x)
defined over some search space X. First, many candidate
solution vectors, or particles, ~xi ∈ X, i = 1, 2, . . . , Np,
are randomly initialized with some random “velocities”
~vi. The particles ‘swarm’ stochastically throughout the
search space searching for its minimum until some stop
condition is met. The dynamical equation is simple: the
i-th particle’s velocity at the j + 1-th time step is

~vi[j+1] = m~vi[j]+c1R1(~pi−~xi[j])+c2R2(~qi−~xi[j]) (2)

The three contributions to the particle’s future velocity
are as follows: the term m~vi[j] is the particle’s current
velocity scaled by m, which can be thought of the par-
ticle’s “inertia”. The second term pulls the particle to-
wards ~pi, which is the minimizer of f over all locations
visited by the ith particle. This can be thought of as the
particle’s “memory”. The last term, considered the “so-
cial” velocity contribution, pulls the particle toward ~qi,
which is the minimizer of f over all locations visited by
some subset of all the particles Ni ⊆ P . In general, the
subset Ni varies from particle to particle, and is called
a neighborhood in the PSO literature. The Ri, which
are random diagonal matrices with elements drawn from
U(0, 1), randomly scale each component of the “memory”
and the “social” contributions to add stochasticity to the
algorithm. The parameters m, c1, c2 are scalars which are
tuned to balance between a more-complete exploration
of the full search space and the algorithm’s convergence
probability/rate. In the simplest PSO algorithms, the
equation of motion is iterated over a fixed number of time
steps Ts specified by the user. At the end, the best of
the best solutions found, namely the minimizer of f(~qi),
i = 1, 2, . . . , Np, is returned.

Several variations of the basic PSO algorithm outlined
above are possible [11]; furthermore there are general
guidelines but none strictly dominates over all others in
performance over all optimization problems[30]. We stay
close to the version favored by Bratton and Kennedy [6].
For the parameters of the PSO algorithm in this paper,
we use c1 = c2 = 2.05 and an m which linearly decreases
from 0.9 to a final inertia 0.4 at the last time step. This
standard parameter prescription [6] guarantees conver-
gence while striking a good balance between exploration
and convergence time.
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The choice of topology, i.e., how the neighborhoods Nj
are defined, plays an important role in the application of
PSO to the regression spline method. We expand on this
more later in the paper.

To apply PSO to find a suitable partition for spline
regression, a transformation must first be defined that
maps a domain partition to a vector ~x in a search space,
typically a unit hypercube in k dimensions, which con-
tains all possible domain partitions. Then, a scalar fit-
ness function is defined over the search space such that
the spline corresponding to the best partition minimizes
the fitness function. For example, our fitness function is
one of least squares:

R(~x) =
N∑
i=1

(D(ti)− s~x(ti))
2

(3)

Evaluation of the PSO fitness function 3 involves first
transforming the search space location ~x to a partition
P , analytically generating some best fit spline s~x(t), and
computing the integrated square error.

III. SIMULATION PIPELINE AND METRICS

To characterize and refine the PSO based regression
spline method, metrics for performance were defined and
a simulation pipeline was set up in MATLAB. A repre-
sentative binary black-hole merger signal was used, taken
from AstroGravS [4], a database hosting GW waveforms
obtained from numerical relativity simulations. Then, a
varying amount of silence was added before and after the
signal to simulate the unknown location of the signal in
time. White Gaussian noise was added with a variance
such that the signal to noise ratio (SNR), defined as

SNR =

(∫ Tf

T0
s(t)2dt

)1/2
RMS(n(t))

(4)

was between 7 and 10 depending on the test being run.
Here, s(t) and n(t) are the signal and noise components
of the data respectively. A PSO algorithm is then used to
optimize over the set of all possible partitions of the time
domain in the dataset, with the objective of finding the
signal and producing an accurate, physically reasonable
least-squares spline. This result is then compared to the
pure signal using the following metrics.

Ideally, the PSO algorithm would (1) produce a parti-
tion which is close to the location of the true wave in the
time domain, (2) return a spline which is a close approx-
imation of the true wave and (3) converge to the same
minimum reliably within a margin of error over multiple
runs.

Three straightforward metrics shed light on the fulfill-
ment of these objectives respectively. An ideal search for
a suitable partition would minimize the following metric:

K =

(
k − k′

k

)2

+

(
r∗ − r
r∗

)2

(5)

Let k′ be the number of knots in the subinterval
[T ∗0 , T

∗
f ] which corresponds to the true location of the

GW transient and is a subinterval of the data defined
over [T0, Tf ]. The first squared term is the square of the
fraction of knots t1, t2, ...tk which fall in this correct in-
terval. In the second term, r∗ denotes the true duration
of the transient, while r denotes the estimated duration
of the transient, which is simply tk − t1.

The second metric compares the final best-fit spline
to the pure signal used to generate the data via least-
squares:

J [s] =
N∑
i=1

(s(ti)− s0(ti))
2 (6)

where s(t) is the spline estimate of the true signal s0(t).
The third metric is the fitness output of the PSO it-

self and is used comparatively between PSO runs on the
same data. The location of the global minimum value
of the fitness function is unknown in general, but the
value itself is independent of the PSO design parameters
and only depends on the dataset and the fitness func-
tion. Therefore, if multiple independent PSO runs on
the same dataset converge to very similar fitness values,
it is increasingly likely that the location found by PSO is
close to the global minimum of the function.

IV. ALGORITHM DESIGN STUDY

Possible improvements to the data pipeline were char-
acterized. Four datasets, each with a unique time of ar-
rival, were generated. The same representative merger
signal at SNR = 7 defined over N data points. Each
data stream lasted for a constant duration Tf − T0 =
3(Tf ∗ −T0∗). The four different times of arrival were
T ∗0 = T0, T0+2/3(T0−Tf ), T0+4/3(T0−Tf ), T0+6/3(T0−
Tf ). The metrics for search accuracy, estimation accu-
racy, and convergence consistency were obtained via a
full factorial study over three potential binary parame-
ters, summarized in the following table and explained be-
low. Paired t-tests on the three metrics were performed
to reveal significant differences in PSO performance, with
a total of 23 possible parameter sets ×2 possible termi-
nation times ×4 times of signal arrival with a sample size
of 64 trials.

A. Knot Spacing

A partition defined by k knots is in general represented
by a k dimensional vector in a k dimensional search space
which must be searched by PSO. If the SNR is high
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Parameter Control Experimental
Spacing Unconstrained Linear
Regularization λ = 0 arg minλ>0{GCV (λ)}
Topology gbest Ring lbest
Tstop N/A 50, 250 time steps

TABLE I. The Tstop values were chosen in an ad-hoc method
by looking at the settling of the best fitness value to a mini-
mum over time.

FIG. 1. The true signal injection (red) is contrasted with
the spline (blue), which was estimated from the same set of
noisy data (gray) containing the transient signal at SNR =
7. An unconstrained knot spacing with standard least-squares
fitting is used on top, while a constrained knot spacing is used
below with a regulated spline fit.

enough, the additional flexibility of the additional dimen-
sions can improve accuracy of the fitting algorithm. How-
ever, the danger lies in lower SNRs, where this additional
flexibility leads to overfitting of the data and clustering
of knots, which results in flagrantly unphysical spline es-
timates and reduces the C 2 smoothness of the spline.
Fixing the number of knots and constraining the spacing
between knots to be equal is one possible way to address
overfitting. Since there are only two knot parameters to
optimize (the location of the first and last knots), the
dimensionality of the search space is reduced to 2. Fur-
thermore, calculations involving cubic B-splines can be
simplified since closed-form expressions for B-splines ex-
ist in the case where the partition is equally-spaced and
because the interior B-splines will all be shifted copies of
each other.

Since there are only two free parameters that need to
be numerically optimized in the constrained knots case,
namely the two end knots, it is possible to explore the

FIG. 2. The parameters to be optimized are denoted by ar-
rows.

FIG. 3. Least squares fitness function (with smoothness
penalty) evaluated over a 200 × 200 grid of the search space
with a constrained knot spacing and a representative wave-
form, with no noise (top) and noise added (SNR = 7, bottom).

fitness function and visualize its overall profile using just
a grid search. Fig. 3 shows the fitness function for both
the case of zero noise and when noise is added to the
signal (SNR=7). (The parameters used are explained in
the next subsection.) This simple case already shows
the highly multi-modal nature of the fitness function.
Clearly, the multi-modality can be expected to be much
higher in the unconstrained knots case, invalidating the
use of local numerical minimization algorithms such as
gradient descent or Nelder-Mead for locating the global
minimum.

B. Knot Parameterization

For both the constrained and unconstrained knot spac-
ing schemes, there are many possible ways to param-
eterize a given domain partition. However, any trans-
formation from a domain partition to a location in the
search space should be invertible in order to reduce de-
genrate optima in the fitness function. This condition is
not met, for instance, if the parameters are simply the
knot locations themselves, tj , j = 1, 2, . . . , k and each
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is varied independently by PSO. (Earlier studies [23, 24]
used this scheme because of its simplicity.) There are
many possible ways to impose the invertibility condition;
In practice, however, certain parameterizations are more
effective than others.

In our analysis we use the following invertible linear
transformation (the inverse is described because it is
more intuitive).

x1 =
t1 − T0
Tf − T0

(7)

xk =
tk − t1
Tf − t1

(8)

xi =
ti − ti−1
ti+1 − ti−1

, 1 < i < k (9)

The locations of the outermost (first and last) knots are
encoded into the search space as distance ratios relative
the endpoints of the dataset, and the remaining knots
are encoded as distance ratios relative to their adjacent
knots.

C. Penalized Spline

Preliminary tests, especially those without the con-
strained knot spacing, tended to overfit the noise es-
pecially at lower SNRs, as seen in the top part of Fig.
1. As a result, an overfitting penalty was introduced in
the least-squares function [27], using generalized cross-
validation to fix the regulator gain λ [24]. Given a do-
main partition P , its corresponding B-splines Bj , and a
regulator gain λ, we can analytically minimize the penal-
ized least-squares function over all αi.

R′(~α) =

N∑
i=1

D(ti)−
k−3∑
j=1

αjBj(ti)

2

+ λ

k−3∑
j=1

α2
j (10)

When this function is minimized, a linear system in
~α is obtained. For a given λ and a matrix whose
columns are discrete-valued B-splines B, the correspond-
ing discretely-valued best fit spline is given by

ŝ(λ) = B~α = B(G+ λI)−1BT ~D

where G = BTB, and ~D and ŝ(λ) are column vectors

with Di = D(ti) being the ith element of ~D and ŝi(λ)
being the ith sample of the best fit spline.

The matrix H(λ) = B(G + λI)−1BT which maps the
data to the discretely-valued spline fit is called the in-
fluence matrix, and can be used to fix the regularization
parameter λ with numerical minimization of the gener-
alized cross-validation[7] function,

GCV(λ) =
1
N

∑N
i=1(Di − ŝi(λ))2

(1− tr(H)/N)
2 (11)

D. PSO Topology

The choice of neighborhood, or the topology of the
swarm, used for obtaining the local best ~qi strongly in-
fluences PSO’s balance between fuller exploration of the
search space and rapid convergence. (Convergence alone
does not guarantee that PSO has found the global min-
imum or even a local one.) The most basic topology is
where the neighborhood of each particle consists of every
other particle. Hence all the particles are attracted to
the single best location found by the swarm. This basic
scheme is called the global best, or gbest, topology.

While the gbest topology converges quickly, a partic-
ular topology called the ring topology generally outper-
forms the gbest topology on many standard multimodal
test problems, although with a significantly longer num-
ber of iterations. In the ring topology, each qi is deter-
mined only by comparing to two neighbors. Note that
neighbors are arbitrarily assigned by index rather than
by Euclidean distance—in general, a particle is not close
to its neighbors in the search space, which enhances the
PSO algorithm’s ability to explore the search space for
better local minima.

E. Results

The statistical weapon of choice for comparing the
various design choices is the paired, single-tailed T-test
[10]. By using a paired T-test to split the data multiple
ways, the effect of any particular binary parameter can
be studied while effectively holding all others constant.
The results are summarized in Table II. The hypothe-
sis that condition A improves search/estimation perfor-
mance compared to condition B is denoted by A > B.
The significance values of the T-test for each hypothesis,
corresponding to the metrics K and J respectively, are
denoted as αK and αJ respectively.

Based on the fairly high αK values, indicating a lack of
statistically significant difference between the two sam-
ples being tested, it is interesting that all the design
choices are found to be almost equally effective when sim-
ply locating the transient and estimating its duration.
There is a slight preference, however, for constrained
spacing of knots.

Unlike K, the metric J measures the finer details of
the departure between the sample values of the true sig-
nal and its estimate. It is clear, based on the extremely
small αJ values, that equally-spaced knots improve the
estimation capability. The data also suggest that a pe-
nalized least-squares spline fit should be used to improve
estimation. There is no strong preference for either of the
PSO topologies tested here, at least over the small num-
ber of iterations used in this study. We choose to use the
ring topology because it is consistent with the prescrip-
tion of Bratton and Kennedy while making no significant
difference to computational cost, which is dominated by
fitness-function evaluations (spline fitting and numerical
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minimization of GCV (λ)).

Tstop Hypothesis αK (Search) αJ (Estimation)
50 Constrained spacing > Unconstrained spacing 0.10 5.1e− 4
50 Penalized fitness function > Standard fitness function 0.62 8.9e− 3
50 Ring lbest > gbest 0.36 0.36
250 Constrained spacing > Unconstrained spacing 0.31 1.4e− 4
250 Penalized fitness function > Standard fitness function 0.43 2.7e− 3
250 Ring lbest > gbest 0.57 0.49

TABLE II. Significance values of each algorithm modification

V. COHERENT NETWORK ANALYSIS

Under a proper choice of coordinates, called the TT-
gauge, a planar wave perturbation in the space-time met-
ric is defined by two linearly independent functions of
time. These so-called polarization components, denoted
as h+(t) and h×(t), get linearly combined in the response
of a single GW detector as a function of sky position
(θ, φ) of the plane wave source, and for compact binary
coalescence signals, the orientation of the binary orbit
projected on the sky (ψ). The linear combination co-
efficients are called the antenna pattern functions of a
GW detector and are usually denoted as F+(θ, φ, ψ) and
F×(θ, φ, ψ) for h+ and h× respectively. For a geographi-
cally distributed set of detectors, there is a time-of-flight
delay associated with each detector’s response which de-
pends on (θ, φ) alone.

A. Method

The asymptotic complexity of PSO does not explicitly
depend on the dimensionality of the optimization prob-
lem. Therefore, unknown parameters such as the source
location can be added without severely impacting run-
time, even though each individual fitness evaluation will
take longer. Two modifications to the algorithm must be
made to perform coherent network analysis. Most impor-
tantly, our fitness function must be generalized to include
(θ, φ, ψ) as parameters. Also, since the azimuthal angle θ
and the polarization angle ψ are periodic, we abolish the
standard “invisible wall” constraint on the PSO search
space in favor of a torus [12]. When particles exit the
search space out one wall, they reenter the search space
from the opposite side. Even though this is not a stan-
dard PSO prescription, the PSO algorithm appears to be
quite robust even when the global optimum is located at
the edge of the search space (see Fig. 5).

In principle we can attempt to impose physical con-
straints on our estimates to improve signal reconstruc-
tion for special cases. For example, in the case of binary

FIG. 4. GW polarization waveforms from a non-spinning bi-
nary black hole merger[5]. The actual amplitude and time
scale of the signal depend on the parameters of the system
such as its total mass and distance from Earth.

black hole mergers, the two linearly independent polar-
izations of the gravitational wave h+, h× are related by
a phase shift of a quarter period as illustrated in Fig. 4.

h+(t) = A(t) cos(Φ(t)) (12)

h×(t) = A(t) sin(Φ(t)) (13)

This constraint can be modeled by cubic spline estima-
tion of A(t) and Φ(t), and has been demonstrated to
work well with narrowband signals whose instantaneous
frequency evolves slowly [24]. However in this study we
will use only the most general of constraints: that h+
and h× arrive almost at the same time and have similar
durations. Two identical sets of k equally-spaced knots
(one for each polarization), separated by a small time
difference ∆T ∈ (0, (tk − t1)) are constructed, with the
time difference ∆T being optimized by PSO. Each set
of knots is used for independent least-squares estimation
of the h+ and h× polarizations. Note that when com-
puting least-squares for a given a sky location θ, φ, the
directional time delays are known and can be reversed;
for simplicity we ignore the time delay in the following.

As shown in the case of a single detector, the fitness
function should use a penalty term in order to improve
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performance. In the case of network analysis, we need
to estimate two splines—one for each polarization—from
the same set of data. Hence, there will be two penalty
terms with their respective regulator gains. The auto-
matic determination of the gains using generalized cross
validation becomes a two-dimensional numerical mini-
mization problem that severely increases computational
costs. In order to avoid this computational catastrophe,
we revert to the unpenalized standard least squares fit-
ness function. With this choice, the space of solutions
is still constrained by the uniformly-spaced spline knots
and the agreement of more than two detectors on the two
linearly-independent polarizations.

If an impingent GW signal h+, h× is detected by the
network, the data D seen at Nd detectors can be rep-
resented as in Eq. 14. Using the Moore-Penrose pseu-
doinverse of the second term in Eq. 14, also called the
antenna pattern matrix, allows us to project the data
into some two-dimensional subspace of the data [21]. A
least-squares spline estimate is computed for each com-
ponent; if the correct θ, φ are selected, our spline esti-
mates should completely contain the h+, h× signals and
agree closely with the Nd-dimensional data from the de-
tectors. Thus our PSO fitness function to be minimized
(Eq. 15) can be the least-squares comparison between
the transformed h+/h× estimates and the data at each
detector, and is a function of our unknown parameters
(θ, φ, ψ,∆T, t1,+, tk,+) as desired.

D =

[
h+ h×
...

...

] [
F+,1 F+,2 . . . F+,Nd

F×,1 F×,2 . . . F×,Nd

]
+ Noise (14)

R =

µ=Ndi=N∑
µ=1 i=1

(
D −

[
h+ h×
...

...

] [
F+,1 . . . F+,Nd

F×,1 . . . F×,Nd

])2

µi

(15)

B. Data Pipeline

To test the network PSO algorithm, we used a network
consisting of the G1, H1, L1, and V1 interferometers, al-
though the exact choice of detector is arbitrary. Twenty
representative sky locations (θ, φ, ψ = 0) were chosen in
an ad-hoc manner, and a GW signal was generated at
each of four detectors using the injection engine GravEn
[28] to apply appropriate directional time delays and to
calculate each individual detector response. For simplic-
ity the source inclination angle ι = 0 was taken to be
constant and optimal.

After a signal is generated at all the detectors from a
certain location, 24 independent realizations of station-
ary Gaussian noise are added to the data at a certain
root-mean-square amplitude to give a total of 480 dis-
tinct datasets. The RMS amplitude is determined using
the definition of SNR over a network in Eq. 4, where s(t)

is taken to be the signal with maximum norm seen by
any detector in the network. We are effectively assuming
that the detectors have identical sensitivities and noise
floors and differ only in their position and orientation
in order to assess the effect of different power distribu-
tions on the algorithm. Note that this is a simplifica-
tion; G1 refers to a hypothetical 4 km interferometer at
the location of GEO600, while H1/L1/V1 refer to the
LIGO Hanford/Livingston interferometers and Virgo re-
spectively, which have varying sensitivities in different
frequency bands.

C. Results

In practice, we would not know if our estimates are
accurate, i.e. whether PSO failed to find the global min-
imum of the fitness function. However we can make indi-
vidual PSO runs independent by instantiating the swarm
with random initial positions and velocities every time
we run the algorithm on a fixed dataset. If the proba-
bility of convergence to the global minimum is P , then
the probability of incorrectly estimating the location and
waveform (1 − P )n decreases as n, the number of in-
dependent PSO runs, increases. Fixing n to be large
enough and choosing the best of n runs allows us to have
some level of confidence that we have indeed estimated
the true GW parameters correctly. In this study we run
the PSO algorithm n = 5 times on a dataset and choose
the estimate with the optimal (minimized) fitness value.
Visualizing the optimal sky location estimates over 24
noise realizations ×20 sets of true GW parameters shows
excellent source direction reconstruction as evidenced in
Fig. 5. The true locations are denoted by crosshairs, and
the twenty-four best estimates for each location are color
coded for clarity.

The polarization angle ψ doesn’t provide additional
insight into the astrophysical system; however a poorly-
estimated ψ can cause the resultant h+, h× estimates to
be phase shifted from the true signal. Thus, comparing
the power spectra of the estimates versus the true wave-
forms is a better way to assess the accuracy of the spline
estimates. For each of the 20 locations, we plot the maxi-
mum and minimum amplitude in each frequency bin over
the 24 best estimates in Fig. 6.

In analyzing the upper/lower bound estimates on
h+, h×, we can disregard frequencies above 103 − 104 Hz
because of their unrealistic astrophysical interpretation
and numerical noise [5]. If we concentrate on the upper
bound estimates, which seem to be more coherent, we see
that estimates of the principal frequency peaks at 64 Hz
in both h+(t), h×(t) are poor: the corresponding peak in
the estimates is consistently higher. We suspect this is
a symptom of overfitting. The second frequency peak,
at ≈ 197 Hz in h+(t) and ≈ 176 Hz in h×(t), also seem
at first glance to be poorly estimated. Closer inspection
reveals that the peaks are consistently switched in the
h+ and h× estimates: the general trend of h+ estimates
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has a peak at ≈ 176 Hz and a peak in the h× estimate
at ≈ 197 Hz.

We cannot explain why this seems to be consistent
over multiple upper-bound estimates. Astrophysically,
h+(t) and h×(t) are coupled and the current spline fit-
ting algorithm at present constructs them completely in-
dependently. Even with the constraints imposed by the
detector network, it appears that further constraints are
necessary to reduce the space of possible waveform esti-
mates, whether through a different set of basis functions,
cross-validation, or imposing physical constraints such as
in the case of a binary black hole merger on top of this
highly general estimation method.

VI. CONCLUSION AND FUTURE WORK

A particle swarm optimization algorithm combined
with cubic spline estimation is a promising new tool for
conducting time-domain estimation of unmodeled gravi-
tational wave transients. Regularization and constraints
on the knot locations improve signal estimates in the
single-detector case. Using a ring topology for the swarm
adds robustness in the face of high multimodality espe-
cially in coherent network analysis, where the algorithm

optimizes over all sky locations and knot positions simul-
taneously. Since the complexity of PSO does not depend
strongly on the dimension of the optimization problem, it
can accommodate additional parameters such as the ∆T
parameter used to model the time offset between the set
of knots used for fitting the h+ and h× waveforms which
gives us additional flexibility in working with unmod-
eled transients. Future work will focus on improving the
estimation in the network analysis algorithm with addi-
tional regularization, and characterization of the method
as applied to actual interferometers whose noise floors
are differently colored and sensitivities differ so that we
may compare PSO to existing methods of transient data
analysis.
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