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Abstract

This paper discusses modeling of spreading nematic liquid crystal films. We
concentrate on gravity driven spreading and consider various instabilities which
occur during the spreading. We find that nematic character of the spreading film
leads to stronger instabilities of the film fronts, and that it also leads to surface
instabilities. We also present results of physical experiments involving spreading
nematic films and find good agreement with the theoretical and computational
predictions.

1 Background

As the name suggests, ‘liquid crystals’ exist in an intermediate state between a liquid and
a solid. The term may be misleading however, they are not a crystal, and they need not
be a liquid. Liquid crystals exist all around us in everyday life - in plastics, crude oil,
lipstick, and many other places [2]. Their most widely known industrial application is in
Liquid crystal displays (LCDs), which are of enormous technological importance. These,
and other commercially-important applications of liquid crystals, provide a drive for a
greater understanding of their properties.
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Liquid crystals exist in a variety of mesophases; we focus only on the nematic phase.
Nematic liquid crystals (NLCs) consist of rod-like molecules, which prefer to align locally.
This local alignment gives rise to the ‘crystal’-like structure; however there is no long-
range ordering of the molecular direction (this aspect makes liquid crystals similar to
liquids). A more detailed but accessible introduction to liquid crystals of all types can be
found in a recent review article [2].

Figure 1: Instabilities observed during
spreading of liquid crystal drops on horizon-
tal substrate, from [1].

The preferred orientation of the NLC
molecules may be described by the direc-
tor field n, a (unit) vector function of po-
sition and time, which we will describe in
more detail later. External forces tend to
distort this preferred molecular configura-
tion causing the NLCs to undergo elastic
deformations such as splaying, twisting, or
bending [3, 4].

A body of existing research in the field
revolves around instabilities forming in the
spreading of liquid crystals, and their pos-
sible interaction with ‘defects’ [5, 6, 7]. The
term ‘defect’ refers to discontinuities in the
director field of the NLCs’ molecules. More
details about defects can be found in the
literature (see for example the classic text
by De Gennes & Prost[3]). The instabil-
ity involves the shape of the perimeter of
a droplet which is laid on a surface (either
horizontal or inclined), or the shape of the
droplet itself. In [7], a series of experiments

are carried out on spreading NLC droplets, and it is found that the droplets can either
spread stably, or destabilize. Stable spreading means that a droplet has a smooth perime-
ter; while unstable infers various irregularities along the perimeter and on the free surface.
Figure 1 illustrates some of these instabilities [1]. Different phenomena are observed as
the relative humidity, temperature, and droplet size are varied, as discussed in the litera-
ture [7].

This spreading NLC droplet scenario has been considered from a theoretical viewpoint
[5, 6], but little theoretical work has been done on the relatively simple problem of gravity
driven spreading of NLC film down an inclined plane. The behavior of a Newtonian fluid
flowing in this setting is well understood [8]. In this paper we investigate the behavior of
a thin film of NLC flowing down an incline instead; in particular, how the behavior differs
from the Newtonian case. We will discuss the dynamics of such NLC films using linear
stability analysis (LSA), two and three dimensional numerical simulations of a theoretical
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model, and physical experiments. We first introduce the evolution equation derived within
long wave theory in §2. In §3 we consider the two dimensional (2D) physical problem and
carry out linear stability analysis and simulations in this simplified geometry. Then, in §4,
the 3D simulations are discussed with an emphasis on extracting the growth rates of the
unstable patterns that form, and on comparing them to the results of the LSA. Finally,
in §5 we discuss our experimental results and compare the findings to the theoretical and
computational results.

2 Evolution equation

A simplified model describing the flow of a thin film of NLCs using long wave theory and
assuming that the unperturbed flow is 2D can be found in [5] and a basic introduction
to long wave theory in [8, 10]. The model [5] describes the evolution of the film height
h(x, y, z, t) of NLCs on a rigid substrate driven by a constant flux at the far-field. This
model will be a starting point for our work.

Figure 2: (a) Schematic diagram of NLCs flowing down a substrate with an inclination
angle α.

To start with, we define our coordinate system (x, y, z) such that (x, y) are the in-
plane coordinates defining the plane of spreading, with x defining the direction of greatest
slope; while z is the out-of-plane coordinate (see Figure 2). Since the nematic director
field is a unit vector, in general it may be written as n = (sin θ cosφ, sin θ sinφ, cos θ),
a vector that represents the local preferred orientation of the nematic molecules. The
angle θ(x, y, z, t) is measured with respect to the (x, y) plane, with θ = 0 being normal
to this plane. The azimuthal angle φ(x, y, z, t) specifies the director orientation in the
(x, y) plane; for simplicity here we assume as in [11] that φ = 0, so that the director
field lies in a plane, and simplifies to n = (sin θ, 0, cos θ). We still allow for a fully three-
dimensional fluid velocity; within lubrication approach this three-dimensional velocity is
reduced to two dimensions. The director orientation can be influenced by many factors
including external electromagnetic fields, and the surface with which it is in contact [3].
The preferred orientation at the interface of the liquid crystal and its surrounding (i.e.
the substrate or the air) is referred to as anchoring. In the case of strong anchoring,
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the director takes a fixed angle at the surface. In general, these fixed directions are not
the same at the flat substrate and at the free surface. One may define a parameter ∆Θ,
representative of the difference between the preferred value of the director angle θ at
the free surface, and that at the substrate. When ∆Θ 6= 0, the strong anchoring model
becomes ill-posed at the contact line, where the strong anchoring dictates that the director
must take upon two distinct orientations at a single point (one parallel to the substrate
and one orthogonal to the film of NLCs). This contradiction was addressed by Cummings
et al. [6] in a weak anchoring model. The nondimensional evolution equation derived in
[6] for a film of height h(x, y, z, t) spreading on a horizontal substrate is given by

ht +∇ · [h3(C∇∇2h− B∇h) +N (m2 − hmm′)∇h] = 0 , (1)

m(h) =
h3/2

β3/2 + h3/2
. (2)

(The scales and nondimensional parameters associated with the terms in (1) are summa-
rized below where “∗” denotes dimensional parameters.) The fourth-order term propor-
tional to C is due to the capillary effects involving surface tension which has a flattening
effect at the free surface [8]. The term proportional to B is due to hydrostatic pressure,
and the remaining terms are due to the liquid crystalline nature of the spreading fluid.
Here β is introduced as a parameter to govern the anchoring is weak or strong. In the
weak anchoring model, a surface energy is assigned to the boundary with a finite anchor-
ing strength, allowing the director to bend through successively smaller angles as the film
height h decreases, with the bending angle approaching zero as the film thickness h→ 0
[6]. This behavior is modeled by introducing the monotone function of film height, m(h),
describing weak anchoring when h � β and strong anchoring when the inequality is re-
versed, including the special case of β = 0 in which the nematic term takes the form of
negative diffusion, as discussed in [6]. Dimensionally, the anchoring condition is relaxed
over the length scale β∗ = βH∗, where H∗ is the characteristic film height [6]. Also, the
parameter δ = H∗/L∗ � 1 is introduced (the ratio of the characteristic film height H∗

and the characteristic length L∗ of the liquid crystal drop). The long wave approximation
[12] was adopted in deriving the above flow equation. Furthermore, it was assumed that
the substrate was prewetted with a precursor layer of thickness b� h extending to x =∞
(see also [5]). The scales used are defined as follows

(x∗, y∗, z∗) = L∗(x, y, δz), t∗ =
L∗

3U∗
t, h∗ = H∗h, (3)

C =
δ3γ∗

µ∗U∗
, B =

δ3ρ∗g∗L∗2

µ∗U∗
sinα, N =

5(∆Θ)2K∗

2µ∗U∗L∗
(4)

(the equation (2) assumes the inclination angle of the substrate α = 0). Here, U∗ is the
characteristic flow velocity in the x∗-direction. The inverse Capillary number C is defined
as the ratio of surface tension to viscous forces, the Bond number B is defined as the
ratio of density to viscous forces, and the inverse Ericksen number N is defined as the
ratio of the elastic forces to viscous forces. In (4), the density of the NLCs is denoted as

Copyright © SIAM 
Unauthorized reproduction of this article is prohibited

59



ρ∗, K∗ is the representative elastic constant, γ∗ is the surface tension, µ∗ = α∗4/2 is the
(positive) representative viscosity scale with α4 as a constant in the equation that governs
the viscosity (see [6] for further details), and g∗ is gravity.

For the inclined case, the downhill component of gravity is added to (1) resulting in
the following formulation [8]

ht +∇ · [h3(C∇∇2h− B∇h) +N (m2 − hmm′)∇h] + U(h3)x = 0 . (5)

Here, U = δ3ρ∗g∗L∗2/(µ∗U∗)cosα, and this additional term describes the tangential com-
ponent of gravity, g∗, acting in the downhill direction.

3 Two dimensional flow

The evolution equation is quite complex and hence difficult to analyze. Below, we
present several scenarios where perturbations and approximations are applied to predict
the overall behavior of the system, and we derive conditions necessary for developing
instabilities. First, we analyze the linear stability of a uniform film and the traveling wave
for the 2D problem, where it is assumed that the flow is independent of the transverse
(y) coordinate. Afterwards, we use linear stability analysis (LSA) to predict the stability
of the 2D traveling wave with respect to transverse perturbations.

3.1 Linear stability analysis of a uniform film

Let us first consider the simple case of perturbations to a flat film of constant thickness
ho and assume that h is independent of y. Then (5) reduces to

ht + ∂x[h
3(Chxxx − Bhx) +N (m2 − hmm′)hx] + U(h3)x = 0 . (6)

Perturbing the profile by a small amplitude of order ε where 0 < ε� 1, we have

h(x, t) = ho + εh1(x, t) +O(ε2), (7)

and substituting (7) into (6), we find that the O(ε) equation is

h1t + Ch3
oh1xxxx −

(
B −NM(ho)

)
h3
oh1xx + 3Uh2

oh1x = 0 , (8)

M(ho) =
h

3/2
o − β3/2/2

(h
3/2
o + β3/2)3

. (9)

The dispersion relation can be obtained by assuming solutions of the form h1 ∝ eσt+ikx

and substituting into (8)

σ(k) = −Ch3
ok

4 +
(
B −NM(ho)

)
h3
ok

2 − i3Uh2
ok . (10)
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Here, k is the wavenumber, and σ is the complex-valued growth rate. The imaginary
part of the growth rate is responsible for translation and does not affect the stabil-
ity. Surface tension is responsible for stabilizing the system, hence a decaying curve for
Re(σ) vs. k is obtained for perturbations characterized by large wavenumbers k > kc =√

(NM(ho)− B)/C (see Figure 3). When NM(ho) > B, Re (σ) > 0 for wavenumbers
0 < k < kc as shown in Figure 3, hence solutions are unstable leading to the development
of instabilities. The fastest growing wavenumber, km, occurs at the maximum of Reσ,
and the corresponding growth-rate, σm is given by (for NM(ho)− B > 0)

km =

√
NM(ho)− B

2C
, (11)

σm =
(NM(ho)− B)2

4C
h3
o . (12)

km kc
k

ReΣ

Figure 3: The growth rate as a function of the wavenumber plotted for the two cases
NM(ho) < B and NM(ho) > B. Note that instabilities occur only for the latter case
when 0 < k < kc.

3.2 Traveling wave solutions for the two dimensional flow

Proceeding to the traveling wave problem for the 2D evolution equation (6), we now
consider a semi-infinite layer of nematic film flowing down an incline. We use the following
boundary conditions

h→ b, hx → 0, as x→∞ , (13)

h→ 1, hx → 0, as x→ −∞ .
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We again seek a leading order solution ho(x) independent of y. The fluid is of thickness
ho = 1 behind the front and ho = b (b � 1 is the precursor film thickness) far ahead of
the front.

Figure 4: Traveling wave propagating from left to right shown at few different times. Here
N = 0.

Expecting traveling wave solutions for the fluid front, we analyze (6) in a moving
reference frame by introducing the change of variable ξ = x−V t, where V is the velocity
of the wave. Substituting ho(ξ) = h(x, t) into (6) and integrating once with respect to ξ,
we obtain

−V ho + Ch3
ohoξξξ − Bh3

ohoξ +NM(ho)hoξ + Uh3
o = d , (14)

where d is the constant of integration. Applying the boundary conditions given in (13),
we find that d = −b(1 + b) and V = U(1 + b+ b2). In the case when N = 0, (14) collapses
to the Newtonian case and agrees with the results discussed by Kondic [8] and Bertozzi
and Brenner [9]. Also since the integration constant and wave speed are independent of
the inverse Erickson number N , these quantities here are identical as those found in the
Newtonian case [8] even for N 6= 0. For illustration, Fig. 4 shows the traveling wave
profiles at few times obtained by solving numerically equation (8) with the boundary
conditions specified by (13).

3.3 Two Dimensional Simulations

The motivation for these simulations is to explore behavior of the semi-infinite fluid film
flowing down an inclined plane, assuming that the flow remains y-independent, see (6).
Numerical solutions are obtained using the method described in some detail in [8]. The
method is based on second-order accurate finite difference discretization in space with
implicit Crank-Nicolson discretization in time. The boundary conditions are as follows
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h(0, t) = 1, hx(0, t) = 0, h(L, t) = b, hx(L, t) = 0. (15)

The precursor film thickness is set to b = 0.1. Our initial condition is a smoothed
step-function, a hyperbolic tangent smoothly transitioning the film from thickness h = 1
to h = b as in [13]. In our simulations, we use β = 1 (weak anchoring) and vary N (the
inverse Erickson number) to explore its influence on the flow behavior. We note that the
exact value of N is not known and it depends on a number of factors including viscous
and elastic forces; the estimates given in [6] suggest that values in the range O(1)−O(10)
are reasonable.

(a) N = 0. (b) N = 16.

(c) N = 22. (d) N = 27.

Figure 5: Simulations for the vertical plane flow (α = π/2). (a) Newtonian case shown
from top to bottom at times t = 0, 40, 80, 120. Stable fluid flow (b), convective instability
(c) and absolute instability (d) shown at the same times as in (a).

We start by considering the flow down a vertical plane, α = π/2. Figure 5 shows the
results where the parameter N is progressively increased. For small values of N , including
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N = 0 (Newtonian fluid) we find a stable traveling wave solution, characterized by the
dominant capillary ridge, followed by a secondary, strongly damped oscillation. (Note that
stability within this 2D framework is only with respect to x-dependent perturbations, not
y-dependent.) As an example, Figure 5b shows the wave profile for N = 16 at different
times. For t > 0, we observe a traveling wave solution with a constant velocity which
agrees with the result obtained from LSA (V = U(1 + b + b2)). For larger values of N ,
we find a convective instability regime, characterized by sinusoidal waves followed by a
constant state. Figure 5c illustrates the corresponding wave profile for N = 22. The
capillary ridge is still dominant; however, since the waves that form behind the front
propagate faster than the front, when the first wave reaches the front, it interacts and
merges with it. As the front moves forward, its height decreases until the next wave
arrives; therefore, the velocity of the front is not constant anymore. For even larger
values of N , we observe an absolute instability regime, where the instability propagates
upstream. Figure 5d illustrates this regime. For early times we still observe a flat film,
which disappears after a sufficiently long time. We note two kinds of waves: sinusoidal
waves and solitary type waves, similarly as in [13] where a flow of Newtonian fluid, but
under inverted gravity conditions (α > π/2) was considered. Critical values for N where
a transition occurs from stability to convective instability (Nc1) and from convective to
absolute instability (Nc2) were found from numerical simulations by trail and error and
are given in Table 1. An additional insight regarding the transition between the different
regimes can be obtained using LSA, which we discuss next.

3.3.1 Finding critical values of N from LSA

To find the value of N where the transition occurs from stability to convective insta-
bility (Nc1) and from convective to absolute instability (Nc2), we will study the speed of
the boundary of the expanding wave packet. Let us consider the governing equation (5)
again, and also consider the dispersion relation given by (10) with ho = 1. Rewriting
σ = σr + iσi where σr and σi are respectively the real and imaginary parts of the growth
rate, we have

σr = −Ck4 +
(
B −NM(1)

)
k2 σi = −3Uk. (16)

Furthermore, following the same approach as in [13], we find that the speed of the left
and right boundary of the wave packet is given by(

x

t

)
±

= 3U ± 1.62

(
− B +N 1− β 3

2

(β
3
2 + 1)3

) 3
2

. (17)

For α = π/2, we have C = 1, B = 0, U = 1, β = 1, and (x/t)± = 3 ± 1.62
(
N /16

) 3
2 . We

see that the speed of the right moving boundary
(
x/t
)
+

is always positive and greater
than the speed of the leading capillary ridge, which is given by the speed of the traveling
wave solution in Section 3.2 as V = U(1 + b+ b2). This explains why waves catch up and
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merge with the front. The left moving boundary will determine which kind of wave profile
will appear. If the speed of the left boundary,

(
x/t
)
−, is positive, then that boundary will

move to the right. However, if it is slower than the front (V = 1 + b+ b2), the region with
sine-like waves will still grow, but there will always be a constant state region. Therefore,

we will have convective instability for 0 < 3− 1.62
(
N /16

) 3
2 < 1.11. Solving for N yields

17.79 < N < 24.13. Comparison with the numerical results is given in Table 1. We can
see that the results agree within 5%. Similar results are obtained for the flow down an
inclined plane, with α = π/4.

α = π/2 α = π/4
Num LSA Num LSA

Nc1 18.6 17.79 25.43 25.44
Nc2 24.4 24.13 30.6 30.46

Table 1: Critical values for N where a transition occurs from stability to convective
instability (Nc1) and from convective to absolute instability (Nc2). Values are given
for vertical (α = π/2) and inclined (α = π/4) planes as retrieved from the numerical
simulations and LSA for equation (6).

4 Three Dimensional Flow

4.1 Linear Stability Analysis of the Traveling Wave Solution

For Newtonian fluids, it is known that a film flowing down an incline is unstable with
respect to transverse perturbations [8], leading to the formation of finger-like patterns. To
analyze this problem for a NLC film, we perform LSA of the 3D model (5) by perturbing
the traveling-wave profile in the direction transverse to the flow. We consider again the
constant flux driven flow of a semi-infinite film, but now allow for transverse perturbations.

To analyze the stability, we apply a small perturbation at the leading order equation
given by (14) and analyze the flow stability. Considering a semi-infinite domain, we write
the solution in the form

h(x, y, t) = ho(ξ) + εφ(ξ)eσt+iky +O(ε2) , (18)

and upon substituting into (5), we find the O(ε) equation
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−σφ = −V φξ + C
[
k4h3

oφ− k2
(

(h3
oφξ)ξ + h3

oφξξ

)
+ (h3

oφξξξ + 3h2
ohoξξξφ)ξ

]
+B
(
k2h3

oφ− (h3
oφ)ξξ

)
+N

(
− k2Mφ+ (Mφ)ξξ

)
(19)

+3U(h2
oφ)ξ .

For brevity, we use M = M(ho(ξ)) here (recall M was defined in (9)). Since (19) contains
only even powers of k, the solution should also depend only on even powers. Hence, in
the limit of a small wavenumber k, corresponding to long wavelength perturbations of
wavelength λ = 2π/k, we apply the following asymptotic expansion

φ = φo + k2φ1 +O(k4) , σ = σo + k2σ1 +O(k4) . (20)

Substituting (20) into (19), the leading order equation is

−σoφo =

[
− V φo + C(h3

oφoξξξ + 3h2
ohoξξξφo)− B(h3

oφoξ + 3h2
ohoξφo)

+N (Mhoξξ +Mhoh
2
oξ) + 3Uh2

oφo

]
ξ

. (21)

In [8], the position of the contact line modified by the perturbation in (18) was considered
and the boundary conditions were accordingly linearized and it was concluded that φo(ξ) =
hoξ(ξ). Substituting this expression into (21), we find

−σohoξ =

[
− V ho + Ch3

ohoξξξ − Bh3
ohoξ +NMhoξ + Uh3

o

]
ξξ

. (22)

Since the right hand side is the leading order equation we conclude that σo = 0. The
O(k2) is given by

−σ1hoξ = −V φ1ξ + C
(
− h3

ohoξξξ + (−h3
ohoξξ + h3

oφ1ξξξ + 3h2
ohoξξξφ1)ξ

)
+B
(
h3
ohoξ − (h3

oφ1)ξξ

)
+N

(
−Mhoξ + (Mφ1)ξξ

)
+ 3U(h2

oφ1)ξ . (23)

Integrating (23) and applying the boundary conditions given by (15), we obtain

σ1(k) = − 1

1− b

∫ ∞
−∞

(
Ch3

ohoξξξ − Bh3
ohoξ +NMhoξ

)
dξ . (24)

Using (14) to simplify the integrand, (24) becomes

σ1(k) =
1

1− b

∫ ∞
−∞

(
b(1 + b)− U(1 + b+ b2 − h2

o)ho
)

dξ . (25)
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Therefore, for small k we find an approximate growth rate

σ(k) ≈ k2

1− b

∫ ∞
−∞

(
b(1 + b)− U(1 + b+ b2 − h2

o)ho
)

dξ . (26)

The sign of the integral expression on the right hand side of (26) is not obvious, since
the integral involves ho , the solution of the 2D traveling wave problem. Therefore, a
numerical approach is used to simulate profiles of the film height, ho, which is then used
to numerically evaluate (26). This approach is used to confirm that the behavior observed
in the simulations is reflected by the theory. This is discussed in the following section.

To confirm for the reader that the result agrees with known results for Newtonian
fluids, we consider the limit of a large β , β � ho. Then, m(h)→ 0, and the director field
within the drop is uniform. This analysis performed throughout this section collapses the
results to the Newtonian case as analyzed in [8].

4.2 Three Dimensional Simulations

Three dimensional simulations were carried out using the modified version of the compu-
tational code described in [14], based on an ADI (alternate direction implicit) algorithm.
We use this modified code here to consider time evolution of a flow subject to a single
perturbation of specified wave number. In the simulations, we vary N and the wavelength,
λ, of the perturbation. For simplicity, we use λ = Ly, where Ly is the domain size in
the y direction. To generate the initial condition, we perturb the traveling-wave profile
from the 2D simulations discussed above, applying a cosine-like perturbation of the front
position in the y direction. At the y-boundaries (y = 0, Ly), we apply no-flow boundary
conditions, by requiring hy = hyyy = 0 there.

Figure 6 shows the results of simulations for a film flowing down a vertical plane in the
+x direction. We see that the perturbation grows in size as time progresses, showing that
we are in the unstable regime. In addition a dominant capillary ridge forms at the tip of
the propagating ‘finger’, similarly as found in Newtonian case [8]. Figure 7a shows the
top view of the front of the film (the intersection of the 3D profile with a plane z = 0.5).
From this 2D cross-section we find the amplitude of the perturbation as a function of
time. The amplitude is taken from x = 0 to the tip of the bump for each time. Figure 7b
shows time evolution of the amplitude. For early times, we find exponential growth, as
also illustrated in Figure 7c. For longer times, we still find that the perturbation grows,
but slower than exponentially.

From the results for the amplitude, we can extract the growth rate, σ, of the pertur-
bation. This is done by fitting the amplitudes to the functional form A(t) = A0e

σt, where
A(t) is the amplitude at the time t, and A0 is the initial amplitude, taken as A0 = 0.2.
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(a) t = 0. (b) t = 5.

(c) t = 10. (d) t = 15.

Figure 6: The results of numerical simulation of the 3D problem, showing the film thick-
ness, h(x, y), at times t = 0, 5, 10, 15. Here N = 10 and Ly = 10.

4.2.1 Comparison to Linear Stability Analysis

In the simulations we vary the value of N = 0, 5, 10, 15, and consider λ = Ly in the
range (6.5, 17). As discussed below, this is the range where based on LSA we expect to
find transition from stability to instability as λ is increased. We then extract the growth
rates to discuss the degree to which these growth rates agree with the LSA results from
(24) and (25). In Figure 8 we show by symbols the growth rates obtained from the 3D
simulations for four different values of N . In order to compare with LSA, we fit this
data by a polynomial in powers of k2, where k is the wavenumber. The motivation for
this fit is to find predicted behavior for small k. We cannot simulate this region directly
for very small k, since smaller k requires very large λ = Ly, and the simulations become
demanding due to a large computational domain and correspondingly large number of
grid points. Our first attempt was to fit the data from simulations with a quartic fit, but
could not obtain a good fit with the data. It turns out however that a good agreement
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(a) Top view of the fluid front. (b) Amplitude of the pertubation.

(c) Amplitude of the perturbation for early
times.

Figure 7: (a) The position of the film’s front as a function of time measured at z = 0.5.
(b) Amplitude of the perturbation obtained from the results shown in (a). (c) Zoomed in
version of (b) showing the area of exponential growth using a logarithmic scale for the y
axis. The line is the best fit approximation. Here, N = 10 and Ly = 10. For this case,
we find the growth rate σ ≈ 0.13.
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can be found using an octic fit of the form

σ(k) = a1k
2 + a2k

4 + a3k
6 + a4k

8 (27)

(lower-order polynomials do not give a good fit). The results of the fit are shown in
Figure 8. This figure also compares the predictions of this fit with the LSA result (20),
which holds for small k. We find the values of σ1 (coefficient of k2 term as in (20)) by
calculating numerically the integral in (24) (with C = 1, see [6] and B = 0, as appropriate
for the flow down a vertical wall) for various N . Table 2 lists the values of σ1 for several

N σ1

0 1.2699
5 1.3565
10 1.4583
15 1.5754

Table 2: Values of σ1 for few values of N .

values of N . We see that increasing N causes an increase in the values of σ, suggesting
that the NLC flow is more unstable than the corresponding Newtonian fluid (N = 0).
Figure 8 indicates a good agreement between the octic fit to the 3D numerical simulations,
and the LSA results for small wavenumbers. For large wavenumbers, we see in Figure 8
that for larger values of N , the critical wavenumber, kc, increases, suggesting increased
instability.

5 Experimental Results

We have also carried out simple physical experiments with NLC (4-Cyano-4-pentylbiphenyl
from 2A PharmaChem ) down a vertically positioned silicon wafer. Figure 9 shows an ex-
ample of our experimental results. Initially, a line of NLC (volume 125µL) is positioned on
a horizontal wafer, which is then rotated to the vertical plane. While the fluid is spreading,
we measure the time interval needed for a finger to travel a specific distance; the width
of the fingers; and their distance traveled. Since the exact value of N is unknown, we
cannot explicitly compare experiments to specific simulation cases. Instead, we find the
average wavelength (the distance between the fingers), and compare this value with the
most unstable mode obtained from simulations, and we also compare the corresponding
growth rates between the experiment and simulations.

In order to compare the data to the simulations and theory, we need the scales used
to nondimensionalize the evolution equation: t∗ = (L∗/U∗)t, and l∗ = L∗l, where U∗ =
δ3ρ∗g∗L∗2/µ∗ and L∗ =

√
γ∗/(ρ∗g∗) as in [6], and δ = H∗/L∗ (we remind the reader that

any parameter with the ‘*’ superscript is dimensional). We use the numerical values for
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(a) N = 0. (b) N = 5.

(c) N = 10. (d) N = 15.

Figure 8: In each panel above, the blue dots represent the data points retrieved from the
simulations, the red lines are the fits to the data as described in (27), and the black line
is the quadratic form resulting from LSA in the limit of small wavenumbers, σ = σ1k

2,
see (26).

physical parameters as specified in [6, 11]: the surface tension, γ∗ ≈ 3.5× 10−2 N/m, the
density, ρ∗ = 103 kg/m3, and the viscosity, µ = 4× 10−2 Pa s. Substituting these values
gives L∗ ≈ 1.9 mm and U = 0.88δ3. For our experiment, the approximate value of fluid
thickness is H∗ ≈ 1mm. Using this value we find that δ ≈ 0.5, and so U∗ ≈ 0.11. The
average wavelength is found by dividing the total width of the domain, 7.5 cm, by the
number of fingers. On average, we observe five fingers, giving the average wavelength of 1.5
cm and corresponding nondimensional wavenumber of k ≈ 0.80. This value is consistent,
although slightly larger than the most unstable wavenumber found in simulations, see
Figure 8.

To extract the growth rates, we track the fingers’ length as a function of time. We find
that on average the fingers grow initially at a rate of ≈ 1/6 cm/s. Assuming exponential
growth (as appropriate for early times), we then find the corresponding nondimensional
growth rate, σ ≈ 0.12. This value is again consistent with the growth rates found in simu-
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Figure 9: Image of line of NLC flowing down silicon wafer.

lations, see Figure 8. While the present experimental setup does not allow for more precise
comparison to theory, we find this order-of-magnitude agreement encouraging, showing
that the theoretical model captures the main features of the instability mechanism.

6 Conclusion

In this work, we have compared analytical, computational, and experimental results for
the flow of nematic liquid crystals down an incline in both two (2D) and three (3D)
dimensions. In general, we find good agreement between the results of these different
techniques.

The main result for the 2D problem is the prediction for formation of surface waves,
which are due to the nematic properties of the spreading fluid. The properties of these
waves, which have not been observed so far, are influenced by the parameter N (inverse
Ericksen number) and the inclination angle α. In 3D, we find computationally that an
increase of N leads to increased instability, therefore predicting faster instability growth
(larger growth rates) and shorter distance between emerging fingers, compared to the
equivalent Newtonian fluid.
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