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Abstract

We prove, for Stokes, Oseen, and Boussinesq finite element discretizations on general meshes, that
grad-div stabilized Taylor-Hood velocity solutions converge to the pointwise divergence-free solution
(found with the iterated penalty method) at a rate of γ−1, where γ is the grad-div parameter. However,
pressure is only guaranteed to converge when (Xh,∇ ·Xh) satisfies the LBB condition, where Xh is the
finite element velocity space. For the Boussinesq equations, the temperature solution also converges at
the rate γ−1. We provide several numerical tests that verify our theory. This extends work in [6] which
requires special macroelement structure in the mesh.

1 Introduction

It has recently been shown for several types of incompressible flow problems that on meshes with special
structure that grad-div stabilized Taylor-Hood solutions converge to the Scott-Vogelius solution as the grad-
div parameter approaches infinity [1, 7, 6]. Large grad-div stabilization parameters can be helpful in enforcing
mass conservation in solutions, reducing error by reducing the effect of the pressure on the velocity error,
and making the Schur complement easier to precondition and solve. However, a large parameter essentially
enforces extra constraints on the velocity solution. Hence it is not clear if a negative effect can arise from a
large parameter. By proving what the limit solution is, we can know the quality of a solution found with a
large parameter.

The results of our paper extend this idea to general meshes where a Scott-Vogelius solution may not
exist. In such cases, convergence will be to the pointwise divergence-free solution (which is found with
the iterated penalty method). In this general case, the velocity solution still converges, but the pressure
solution only converges when (Xh,∇·Xh) satisfies the LBB condition, where Xh is the finite element velocity
space; we consider Xh to be globally continuous piecewise polynomials. We consider the Stokes, Oseen, and
Boussinesq systems, and for each case, we rigorously prove the convergence rates for velocity and pressure,
and also temperature for Boussinesq systems. We numerically test our theory, and all computational results
are consistent with our analysis.

This paper is arranged as follows: Section 2 provides notation and preliminaries to allow for a smooth
presentation to follow. In Section 3, we study the Stokes equations. The main result is that the grad-div
stabilized Taylor-Hood velocity solutions converge to the divergence-free solution with a rate of γ−1 as γ
(the grad-div parameter) approaches ∞, and a modified pressure converges to the divergence-free pressure
if (Xh,∇ · Xh) satisfies the LBB condition. In Section 4, we extend the results of Section 3 to the Oseen
equations and obtain analogous results. Finally, in Section 5, we further extend the results to non-isothermic
Stokes flows and again find analogous results.
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2 Mathematical preliminaries

We assume that the domain Ω ⊂ Rd (d = 2, 3) is open and connected with Lipschitz boundary ∂Ω. The
L2(Ω) norm and inner product are denoted by ‖ · ‖ and (·, ·), respectively. We define the following function
spaces

X := H1
0 (Ω)d,

Q := L2
0(Ω).

In X, it is well known that the Poincaré-Friedrich inequality holds: there exists a CPF = CPF (Ω) such that

∀φ ∈ X, ‖φ‖ ≤ CPF ‖∇φ‖. (2.1)

The dual of X is denoted by H−1(Ω), with norm

‖φ‖−1 := sup
v∈X

(φ, v)

‖∇v‖
.

We define the skew-symmetric trilinear operator b∗ : X ×X ×X → R by

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

From [5], we know that
|b∗(u, v, w)| ≤M‖∇u‖‖∇v‖‖∇w‖, (2.2)

where M depends on the size of Ω.
Let Th be a shape-regular, simplicial and conforming triangulation of Ω. Let hT = diam(T ) denote the

diameter of a simplex T and define h := maxT∈Th . We denote by Pk the space of piecewise polynomials with
respect to the triangulation Th with degree not exceeding k, and by Pk := [Pk]d the analogous vector-valued
polynomial space.

Throughout the paper, we consider finite dimensional spaces Xh, Qh, defined by Xh = X ∩
(
Pk(Th)d

)
and Qh = Q ∩ (Pk−1(Th)), which are LBB-stable:

inf
qh∈Qh

sup
vh∈Xh

(∇ · vh, qh)

‖qh‖‖∇vh‖
≥ β > 0.

We define the space of discretely divergence-free functions

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh},

and also the space of pointwise divergence-free functions,

V 0
h := {vh ∈ Xh : ‖∇ · vh‖ = 0}.

Note that in general, and for most common element choices like Taylor-Hood, Vh 6= V 0
h . We also define the

space orthogonal to V 0
h in Xh in the X inner product:

Rh = (V 0
h )⊥ := {rh ∈ Xh, (∇rh,∇vh) = 0 ∀vh ∈ V 0

h }.
In Rh, we observe that the L2(Ω) gradient norm and the divergence norm are equivalent [3], i.e. there exists
CR satisfying

‖∇vh‖ ≤ CR‖∇ · vh‖ ∀vh ∈ Rh. (2.3)

In the case that Vh = V 0
h , the constant CR is independent of h [4], however in general it can depend inversely

on h [3].
For our study of the Boussinesq system, we will also use a temperature space

Sh = {sh ∈ H1(Ω) ∩ (Pk(Th)) , sh|ΓDirichlet
= 0}

.
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3 A connection for the Stokes equations

We first consider the Stokes equations, which are given by

−ν4u+∇p = f,

∇ · u = 0,

u|∂Ω = 0,

where u represents velocity, p represents pressure, f is an external forcing, and ν is the kinematic viscosity.
We will compare the grad-div stabilized Taylor-Hood scheme and the pointwise divergence-free scheme to
determine a connection between the two methods. These two methods are given below:

Algorithm 3.1. Given γ ≥ 0, find (wγh, q
γ
h) ∈ (Xh, Qh) satisfying

ν(∇wγh,∇vh)− (qγh,∇ · vh) + γ(∇ · wγh,∇ · vh) = (f, vh) ∀vh ∈ Xh, (3.1a)

(∇ · wγh, rh) = 0 ∀rh ∈ Qh. (3.1b)

Algorithm 3.2. Find uh ∈ V 0
h satisfying

ν(∇uh,∇vh) = (f, vh) ∀vh ∈ V 0
h . (3.2)

We will use the iterated penalty method to solve (3.2).

Step 0 : ν(∇u0
h,∇vh) + (α(∇ · u0

h),∇ · vh) = (f, vh) ∀vh ∈ Xh (3.3a)

Step k : ν(∇ukh,∇vh) + (α(∇ · ukh),∇ · vh) = ν(∇uk−1
h ,∇vh) ∀vh ∈ Xh (3.3b)

If the iterated penalty method converges, which is known to occur if, e.g., α >
√
dνC3

R [8], then there exists
an N such that ‖∇·ukh‖ ≤ tol for k ≥ N . If tol is sufficiently small, then it is reasonable to assume uh = uNh .

After convergence, we recover pressure via ph := −
∑N
i=0(α(∇ · uih)), thus satisfying

ν(∇uh,∇vh)− (ph,∇ · vh) = (f, vh) ∀vh ∈ Xh. (3.4)

Lemma 3.1. Suppose α is sufficiently large so that Algorithm 3.2 converges, and so that CR
2

α < 1
2 . Then,

‖ph‖ ≤ ν−
1
2 ‖f‖−1.

Proof. The initial step of the iterated penalty method is defined in (3.3a). The system is known to be
well-posed (and can be proven using the Lax-Milgram Theorem). Choosing v = u0

h and using the definition
of ‖ · ‖−1 and Young’s inequality gives

ν‖∇u0
h‖2 + α‖∇ · u0

h‖2 = (f, u0
h) ≤ ν−1

2
‖f‖2−1 +

ν

2
‖∇u0

h‖2.

Reducing now implies that
ν

2
‖∇u0

h‖2 + α‖∇ · u0
h‖2 ≤

ν−1

2
‖f‖2−1. (3.5)
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Now, we consider our earlier definition of ph := −
∑N
k=0(α(∇ · ukh)), where N is the number of iterations

of the iterated penalty method. From previous work in [8], we know that ‖∇ · ukh‖ ≤
CR

2

α ‖∇ · u
k−1
h ‖ ∀k ∈ N.

For ease of notation, let r := CR
2

α . Then 0 < r < 1
2 < 1 (by the assumption that

C2
R

α < 1
2 ), and so

‖ph‖ ≤ α
N∑
k=0

‖∇ · ukh‖

= α( ‖∇ · u0
h‖+ r‖∇ · u0

h‖+ · · ·+ rk‖∇ · u0
h‖)

= α‖∇ · u0
h‖(1 + r + · · ·+ rN )

= α‖∇ · u0
h‖
(

1− rN+1

1− r

)
≤ α‖∇ · u0

h‖
(

1

1− 1
2

)
= 2α‖∇ · u0

h‖.

Using (3.5), we obtain the desired result,

‖ph‖ ≤ ν−
1
2 ‖f‖−1.

Theorem 3.3. Let (wγh, q
γ) be the solution to Algorithm 3.1 for a fixed γ ≥ 0 and let uh be the solution to

Algorithm 3.2. Then,
‖∇(wγh − uh)‖ ≤ γ−1ν−

1
2C−1

R ‖f‖−1.

Thus, as γ →∞, the sequence of grad-div stabilized Taylor-Hood velocity solutions, {wγh}, converges to uh.

Proof. Denote e := wγh − uh and let ph be the recovered pressure from Algorithm 3.2. We subtract (3.4)
from (3.1a) to obtain

ν(∇e,∇vh)− (qγh − ph,∇ · vh) + γ(∇ · e,∇ · vh) = 0 ∀vh ∈ Xh. (3.6)

Orthogonally decompose e ∈ Vh as e = e0 + er where e0 ∈ V 0
h , er ∈ Rh. Choosing vh = e0 in (3.6). This

yields ν‖∇e0‖2 = 0 which implies e0 = 0. Next choose vh = er in (3.6). This gives

ν‖∇er‖2 + (ph,∇ · er) + γ‖∇ · er‖2 = 0,

and after applying Cauchy-Schwarz and Young inequalities to the pressure term, we obtain

ν‖∇er‖2 + γ‖∇ · er‖2 = −(ph,∇ · er) ≤
γ

2
‖∇ · er‖2 +

γ−1

2
‖ph‖2.

Further reduction yields

‖∇ · er‖2 ≤ 2γ−1ν‖∇er‖2 + ‖∇ · er‖2 ≤ γ−2‖ph‖2,

and after taking the square root of both sides, we obtain

‖∇ · er‖ ≤ γ−1‖ph‖.

Using (2.3), we have that
‖∇er‖ ≤ C−1

R ‖∇ · er‖ ≤ γ
−1C−1

R ‖ph‖.

and after applying Lemma 3.1, we obtain

‖∇er‖ ≤ γ−1ν−
1
2C−1

R ‖f‖−1. (3.7)
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Thus, using e0 = 0 and (3.7), we conclude

‖∇e‖ = ‖∇er‖ ≤ γ−1ν−
1
2C−1

R ‖f‖−1. (3.8)

Corollary 3.1. Under the same assumptions as Theorem 3.3, if we further assume (Xh,∇ · Xh) satisfies
the LBB condition (with parameter β0), then we obtain convergence of a modified pressure:

‖(qγh − γ∇ · w
γ
h)− ph‖ ≤ γ−1ν

1
2 β−1

0 C−1
R ‖f‖−1.

Proof. We can rewrite (3.6) as

ν(∇e,∇vh) = ((qγh − γ∇ · w
γ
h)− ph,∇ · vh) ∀vh ∈ Xh.

Dividing both sides by ‖∇vh‖, with ‖∇vh‖ 6= 0, we have ∀vh ∈ Xh

((qγh − γ∇ · w
γ
h)− ph,∇ · vh)

‖∇vh‖
=
ν(∇e,∇vh)

‖∇vh‖
.

Taking the infimum over vh ∈ Xh and applying the assumed inf-sup condition, we obtain

β0‖(qγh − γ∇ · w
γ
h)− ph‖ ≤ ν‖∇e‖.

Finally, applying Theorem 3.3 yields

‖(qγh − γ∇ · w
γ
h)− ph‖ ≤ γ−1ν

1
2 β−1

0 C−1
R ‖f‖−1.

3.1 Numerical Results

We now test the theory above on both barycenter and uniform meshes on Ω = (0, 1)2 with 1
h = 16 using

(P2, P1) elements. On uniform meshes, LBB on the spaces is not known to hold. In this case, we find
convergence of velocity, but no pressure convergence. On barycenter meshes with P2 elements, however, it is
known that (Xh,∇ ·Xh) satisfies the LBB condition, so in this case we expect convergence of both velocity
and pressure.

We chose the true solution to be

utrue =

(
cos(y)

sin(x)

)
,

ptrue = sin(x+ y).

We enforce Dirichlet velocity boundary conditions to be the true solution at the boundary, set ν = 0.01, and
calculate the forcing using

f = −ν4utrue +∇ptrue.

Solutions were computed using Algorithm 3.1 with varying γ and Algorithm 3.2 (using α = 1000).
Table 1 shows results using a barycenter mesh, and here we observe convergence of both velocity and the

modified pressure. Results using a uniform mesh are shown in Table 2. Here we observe O(γ−1) convergence
of the velocity but no convergence of the modified pressure.
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γ ‖∇(wγh − uh)‖ Rate ‖(qγh − γ∇ · w
γ
h)− ph‖ Rate

0 2.354E-02 2.676E-04
10−1 2.844E-03 4.803E-05
100 3.558E-04 0.90 6.877E-06 0.84
101 3.671E-05 0.99 7.215E-07 0.98
102 3.684E-06 1.00 7.251E-08 1.00
103 3.686E-07 1.00 7.266E-09 1.00
104 4.864E-08 0.88 1.825E-09 0.60

Table 1: Differences between grad-div stabilized Taylor-Hood solutions and pointwise divergence-free solu-
tions on a barycenter mesh.

γ ‖∇(wγh − uh)‖ Rate ‖(qγh − γ∇ · w
γ
h)− ph‖ Rate

0 1.290E-03 1.458E-03
10−1 2.529E-04 1.457E-03
100 1.845E-04 0.14 1.457E-03 0.00
101 8.740E-05 0.32 1.457E-03 0.00
102 1.885E-05 0.67 1.457E-03 0.00
103 2.212E-06 0.93 1.457E-03 0.00
104 2.183E-07 1.01 1.457E-03 0.00

Table 2: Differences between grad-div stabilized Taylor-Hood solutions and pointwise divergence-free solu-
tions on a uniform mesh.

4 A connection for the Oseen equations

We next consider the Oseen equations, which are given by:

σu+ U · ∇u− ν4u+∇p = f,

∇ · u = 0,

u|∂Ω = 0,

where u represents velocity, p represents pressure, f is an external forcing, σ can be considered as either a
friction coefficient or inversely proportional to a time step if f is appropriately modified (e.g. for backward
Euler σ = 1

4t and f = f + 1
4tu

n, with un being the solution at the previous time step), ν is the kinematic

viscosity, and U ∈ H ′(Ω) is given. We will compare the grad-div stabilized Taylor-Hood scheme and the
pointwise divergence-free scheme to determine a connection between the two methods. These two methods
are given below:

Algorithm 4.1. Given γ ≥ 0, find (wγh, q
γ
h) ∈ (Xh, Qh) satisfying

σ(wγh, vh) + ν(∇wγh,∇vh) + b∗(U,wγh, vh)− (qγh,∇ · vh) + γ(∇ · wγh,∇ · vh) = (f, vh) ∀vh ∈ Xh (4.1a)

(∇ · wγh, rh) = 0 ∀rh ∈ Qh (4.1b)

Algorithm 4.2. Find uh ∈ V 0
h satisfying

σ(uh, vh) + ν(∇uh,∇vh) + b∗(U, uh, vh) = (f, vh) ∀vh ∈ V 0
h . (4.2)

We use the iterated penalty method to solve (4.2):
Step 0: Find u0

h ∈ Xh satisfying

σ(u0
h, vh) + ν(∇u0

h,∇vh) + b∗(U, u0
h, vh) + (α(∇ · u0

h),∇ · vh) = (f, vh) ∀vh ∈ Xh (4.3)
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Step k: Find ukh ∈ Xh satisfying

σ(ukh, vh) + ν(∇ukh,∇vh) + b∗(U, ukh, vh) + (α(∇ · ukh),∇ · vh) = σ(uk−1
h , vh) + ν(∇uk−1

h ,∇vh)

+ b∗(U, uk−1
h , vh) ∀vh ∈ Xh

(4.4)

If the iterated penalty method converges, which is known to occur when α >
√
dνC3

R [8], then there exists
an N such that ‖∇·ukh‖ ≤ tol for k ≥ N . If tol is sufficiently small, then it is reasonable to assume uh = uNh .

After convergence, we recover pressure via ph := −
∑N
i=0(α(∇ · uih)) to satisfy

σ(uh, vh) + ν(∇uh,∇vh) + b∗(U, uh, vh)− (ph,∇ · vh) = (f, vh) ∀vh ∈ Xh. (4.5)

Lemma 4.1. Suppose α is sufficiently large so that Algorithm 4.2 converges (e.g. if α >
√
dνC3

R), and so
that C

α < 1
2 , where C is a data-dependent constant which satisfies ‖∇ ·ukh‖ ≤ C

α ‖∇ ·u
k−1
h ‖ (existence of such

a constant is shown in [8]). Then,

‖ph‖ ≤ ν−
1
2 ‖f‖−1.

Proof. The system is known to be well-posed and can be proven (by the Lax-Milgram Theorem). Choosing
v = u0

h in (4.3) and using the definition of ‖ · ‖−1 and the Cauchy-Schwarz and Young’s inequalities gives

σ‖u0
h‖2 + ν‖∇u0

h‖2 + α‖∇ · u0
h‖2 = (f, u0

h) ≤ ν−
1
2

2
‖f‖2−1 +

ν

2
‖∇u0

h‖2.

Reducing implies that

σ‖u0
h‖2 +

ν

2
‖∇u0

h‖2 + α‖∇ · u0
h‖2 ≤

ν−
1
2

2
‖f‖2−1. (4.6)

Now, we consider our earlier definition of ph := −
∑N
k=0(α(∇ · ukh)), where N is the number of steps until

convergence (N is guaranteed to be finite since α is chosen to be sufficiently large). From [8], we know that
∃C such that

‖∇ · ukh‖ ≤
C

α
‖∇ · uk−1

h ‖.

For ease of notation, let r := C
α . This yields

‖ph‖ ≤ α
N∑
k=0

‖∇ · ukh‖ = α‖∇ · u0
h‖
(

1− rN+1

1− r

)
.

Appyling (4.6) gives

‖ph‖ ≤
ν−

1
2

2
‖f‖−1

(
α

α− C

)
.

From the assumptions on C and α, we can further reduce to obtain

‖ph‖ ≤ ν−
1
2 ‖f‖−1.

Theorem 4.3. Let (wγh, q
γ) be the solution to Algorithm 4.1 for a fixed γ ≥ 0, let uh be the solution to

Algorithm 4.2. Then,

‖∇(wγh − uh)‖ ≤ γ−1 ν
−1/2

2
(1 +MCU )C−1

R ‖f‖−1.

Thus, as γ →∞, the sequence of grad-div stabilized Taylor-Hood velocity solutions, {wγh}, converges to uh.
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Proof. Denote e := wγh − uh, and let ph be the recovered pressure from Algorithm 4.2. Subtracting (4.5)
from (4.1a), we have

σ(e, vh) + ν(∇e,∇vh) + b∗(U, e, vh) + γ(∇ · e,∇ · vh)− (qγh − ph,∇ · vh) = 0 ∀vh ∈ Xh. (4.7)

Choose vh = e in (4.7) to obtain

σ‖e‖2 + ν‖∇e‖2 + γ‖∇ · e‖2 = −(qγh − ph,∇ · e).

Now, orthogonally decompose e ∈ Vh as e = e0 + er where e0 ∈ V 0
h , er ∈ Rh and apply Cauchy-Schwarz and

Young inequalities to the pressure term (which reduces because e ∈ Vh). This yields

σ‖er‖2 + ν‖∇er‖2 + γ‖∇ · er‖2 ≤
γ−1

2
‖ph‖2 +

γ

2
‖∇ · er‖2,

which implies
γ‖∇ · er‖2 ≤ γ−1‖ph‖2.

Applying Lemma 4.1 and taking γ to the other side of the equation, we obtain

‖∇ · er‖2 ≤ γ−2 ν
−1

2
‖f‖2−1.

Taking square roots and using (2.3), we have

‖∇er‖ ≤ γ−1 ν
− 1

2

2
‖f‖−1C

−1
R . (4.8)

The next step is to bound ‖∇e0‖. Choose vh = e0 in (4.7). As, b∗(U, e, e0) = b∗(U, er, e0), this gives

σ‖e0‖2 + ν‖∇e0‖2 + b∗(U, er, e0) = 0,

and after taking the nonlinear term to the other side, we obtain

σ‖e0‖2 + ν‖∇e0‖2 ≤ ‖b∗(U, er, e0)‖.

Using (2.2) and the assumptions on U , we have

σ‖e0‖2 + ν‖∇e0‖2 ≤MCU‖∇er‖‖∇e0‖,

which further implies
ν‖∇e0‖ ≤MCU‖∇er‖. (4.9)

Thus, using (4.8) and (4.9), we can conclude that

‖∇e‖ = ‖∇e0‖+ ‖∇er‖ ≤ (1 +MCU )‖∇er‖

≤ γ−1 ν
−1/2

2
(1 +MCU )C−1

R ‖f‖−1.

Corollary 4.1. Under the same assumptions as Theorem 4.3, if we further assume (Xh,∇ · Xh) satisfies
the LBB condition (with parameter β0), then we obtain convergence of a modified pressure:

‖(qγh − γ∇ · w
γ
h)− ph‖ ≤ γ−1 ν

− 1
2

2
β−1

0 C−1
R ‖f‖−1(1 +MCU )(σCPF + ν +MCU ).
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Proof. Rewriting (4.7) yields

((qγh − γ∇ · w
γ
h)− ph,∇ · vh) = σ(e, vh) + ν(∇e,∇vh) + b∗(U, e, vh)|‖∇vh‖

Taking the pressure term to the other side and dividing both sides by ‖∇vh‖, with ‖∇vh‖ 6= 0, we have
∀vh ∈ Xh,

((qγh − γ∇ · w
γ
h)− ph,∇ · vh)

‖∇vh‖
=
|σ(e, vh) + ν(∇e,∇vh) + b∗(U, e, vh)|

‖∇vh‖
.

Applying (??), we have

((qγh − γ∇ · w
γ
h)− ph,∇ · vh)

‖∇vh‖
≤ σ(e, vh) + ν(∇e,∇vh)

‖∇vh‖
+
MCU‖∇e‖‖∇vh‖

‖∇vh‖
.

which simplifies to

((qγh − γ∇ · w
γ
h)− ph,∇ · vh)

‖∇vh‖
≤ σ(e, vh) + ν(∇e,∇vh)

‖∇vh‖
+MCU‖∇e‖.

Taking the infimum over vh ∈ Xh and applying the assumed inf-sup condition, we obtain

β0‖(qγh − γ∇ · w
γ
h)− ph‖ ≤ (σCPF ‖e‖+ ν‖∇e‖+MCU‖∇e‖) .

Using (2.1), we have
‖(qγh − γ∇ · w

γ
h)− ph‖ ≤ β−1

0 (σCPF + ν +MCU ) ‖∇e‖.

After applying Theorem 4.3 , we have

‖(qγh − γ∇ · w
γ
h)− ph‖ ≤ γ−1 ν

− 1
2

2
β−1

0 C−1
R ‖f‖−1(1 +MCU )(σCPF + ν +MCU ).

4.1 Numerical Results

We now test the theory above on both uniform and barycenter meshes of Ω = (0, 1)2 with 1
h = 16 using

(P2, P1) elements. On barycenter meshes with P2 elements, it is known that (Xh,∇ ·Xh) is LBB stable, so
in this case we expect convergence of both velocity and pressure. On uniform meshes, however, LBB on the
spaces is not known to hold. In this case, we find convergence of velocity, but no pressure convergence.

We again chose the true solution to be

utrue =

(
cos(y)

sin(x)

)
,

ptrue = sin(x+ y).

We enforce Dirichlet velocity boundary conditions to be the true solution at the boundary, σ = 0.1, ν = 0.01,
U = utrue, and calculated the forcing using the true solution and

f = σutrue + U · ∇utrue − ν4utrue +∇ptrue.

Solutions were computed using Algorithm 4.1 with varying γ and Algorithm 4.2 (using α = 1000).
Results using a barycenter mesh are shown in Table 3. Here we observe O(γ−1) convergence of both

velocity and the modified pressure. Table 4 shows results using a uniform mesh, and we observe convergence
of velocity but no convergence of the modified pressure.
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γ ‖∇(wγh − uh)‖ Rate ‖(qγh − γ∇ · w
γ
h)− ph‖ Rate

0 2.236E+00 2.723E-02
10−1 2.881E-01 5.271E-03
100 3.698E-02 0.89 7.813E-04 0.83
101 3.834E-03 0.98 8.246E-05 0.98
102 3.849E-04 1.00 8.292E-06 1.00
103 3.850E-05 1.00 8.297E-07 1.00
104 3.850E-06 1.00 8.308E-08 1.00

Table 3: Differences between grad-div stabilized Taylor-Hood solutions and pointwise divergence-free solu-
tions on a barycenter mesh.

γ ‖∇(wγh − uh)‖ Rate ‖(qγh − γ∇ · w
γ
h)− ph‖ Rate

0 1.282E-01 1.458E-01
10−1 2.522E-02 1.458E-01
100 1.840E-02 0.14 1.457E-01 0.00
101 8.735E-03 0.32 1.457E-01 0.00
102 1.882E-03 0.67 1.457E-01 0.00
103 2.214E-04 0.93 1.457E-01 0.00
104 2.254E-05 0.99 1.457E-01 0.00

Table 4: Differences between grad-div stabilized Taylor-Hood solutions and pointwise divergence-free solu-
tions on a uniform mesh.

5 A connection for the Boussinesq equations

We now consider the Boussinesq equations for the flow of heated silicon oil, which are given by:

−4u+∇p = Ra

(
0

T

)
,

∇ · u = 0,

−4T + u · ∇T = g,

u|∂Ω = 0,

where u represents velocity, p represents pressure, T represents temperature, f is an external forcing, g
encompasses the Dirichlet boundary conditions on the temperature, and Ra is the Rayleigh number.

We will compare grad-div stabilized Taylor-Hood and the pointwise divergence-free solution to determine
a connection between the two methods. The two methods are given below:

Algorithm 5.1. Given γ ≥ 0, find (wγh, q
γ
h,Λ

γ
h) ∈ (Xh, Qh, Sh) satisfying

(∇wh,∇vh)− (qh,∇ · vh) + γ(∇ · wh,∇ · vh) = Ra

((
0

Λγh

)
, vh

)
∀vh ∈ Xh, (5.1a)

(∇ · wh, rh) = 0 ∀rh ∈ Qh, (5.1b)

(∇Λγh,∇sh) + b∗(wh,Λ
γ
h, sh) = (g, sh) ∀sh ∈ Sh. (5.1c)

Algorithm 5.2. Find (uh, Th) ∈ (V 0
h , Sh) satisfying

(∇uh,∇vh) = Ra

((
0

Th

)
, vh

)
∀vh ∈ V 0

h , (5.2a)

(∇Th,∇sh) + b∗(uh, Th, sh) = (g, sh) ∀sh ∈ Sh. (5.2b)
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We use an iterated-penalty-quasi-Newton method to solve (5.2a) - (5.2b):
Step 0: Find (u0

k, T
0
k ) where

(∇u0
k,∇vh) + α(∇ · u0

k,∇ · vh)−Ra
((

0

Tk

)
, vh

)
= 0 ∀vh ∈ Xh, (5.3a)

(∇T 0
k ,∇sh) + b∗(u0

k, Tk−1, sh) + b∗(uk−1, T
0
k , sh)− b∗(uk−1, Tk−1, sh) = 0 ∀sh ∈ Sh, (5.3b)

where uk−1 and Tk−1 are the initial guesses (typically 0).

Step n: Find (unk , T
n
k ) where

(∇unk ,∇vh) + α(∇ · unk ,∇ · vh)−Ra
((

0

Tnk

)
, vh

)
= (∇un−1

k ,∇vh) + α(∇ · un−1
k ,∇ · vh) ∀vh ∈ Xh, (5.4a)

(∇Tnk ,∇sh) + b∗(unk , Tk−1, sh) + b∗(uk−1, T
n
k , sh)− b∗(uk−1, Tk−1, sh) = 0 ∀sh ∈ Sh, (5.4b)

where uk−1 and Tk−1 are the solutions to the previous step.
Assuming that the iterated penalty method converges, then there exists an N such that ‖∇ · ukh‖ ≤

tol for k ≥ N . If tol is sufficiently small, it is reasonable to assume uh = uNh . In our computation,
we choose tol = 10−9. We end the outer iteration when ‖uk − uk−1‖ < tol.

After convergence, we recover pressure via ph := −
∑k
i=0(α(∇ · uih)) to satisfy

(∇uh,∇vh)− (ph,∇ · vh) = Ra

((
0

Th

)
, vh

)
∀vh ∈ Xh, (5.5a)

(∇Th,∇sh) + b∗(uh, Th, sh) = (g, sh) ∀sh ∈ Sh. (5.5b)

Remark 5.3. Throughout this section, we use the small data condition:

RaC
2
PFCgM < 1.

A small data condition is also used in [2].

Lemma 5.1. If the data satisfies the small data condition RaC
2
PFCgM < 1, then solutions to Algorithm

5.1 exist uniquely.

Proof. Existence of solutions can be proven using the exact same techniques as in [2]. For uniqueness, assume
two solutions, say (w1, q1,Λ1) and (w2, q2,Λ2). Note

‖∇Λ2‖2 = (g,Λ2).

Denote ew := w1 − w2, eq := q1 − q2, and eΛ := Λ1 − Λ2. We subtract to obtain

(∇ew,∇v)− (eq,∇ · v) + γ(∇ · ew,∇ · v) = Ra

((
0

eΛ

)
, v

)
∀v ∈ X,

(∇ · ew, r) = 0 ∀r ∈ Q,
(∇eΛ,∇s) + b∗(w1, eΛ, s) + b∗(ew,Λ2, s) = (g, s) ∀s ∈ S.

Choose v = ew, r = eq, and s = eΛ. Then

‖∇ew‖2 + γ‖∇ew‖ = Ra

((
0

eΛ

)
, v

)
(5.6a)

≤ Ra‖∇eΛ‖‖ew‖ (5.6b)

≤ 1

2
‖∇ew‖2 +

C4
PFR

2
a

2
‖∇eΛ‖2 (5.6c)
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and
‖∇eΛ‖2 + b∗(ew,Λ2, eΛ) = 0. (5.7)

Further reducing (5.7) yields

‖∇eΛ‖ ≤M‖∇ew‖‖∇Λ2‖ (5.8a)

≤MCg‖∇ew‖ (5.8b)

Combining (5.6c) and (5.8b), we obtain

‖∇ew‖2 ≤ C4
PFR

2
aM

2C2
g‖∇ew‖2.

Thus, uniqueness holds if C4
PFR

2
aM

2C2
g < 1, i.e. if the small data condition above holds.

We will continue with an a priori bound on Λγh.

Lemma 5.2. Suppose the data satisfies the small data condition RaC
2
PFCgM < 1 so that Algorithm 5.1 has

a unique solution (wγh, q
γ
h,Λ

γ
h). Then

‖∇Λγh‖ ≤ Cg,

where Cg depends only on g.

Proof. Let sh = Λγh in (5.1c). Then we have

‖∇Λγh‖
2 = (g,Λγh).

Applying (2.1) and the Cauchy-Schwarz inequality, we obtain

‖∇Λγh‖
2 ≤ CPF ‖g‖−1‖∇Λγh‖.

Simplifying, we are left with
‖∇Λγh‖ ≤ CPF ‖g‖−1 = Cg.

Theorem 5.4. Suppose the data is sufficient to allow for Algorithm 5.1 and Algorithm 5.2 to have unique
solutions, (wγh, q

γ
h,Λ

γ
h) and (uh, Th) respectively. Let ph be the pressure recovered from Algorithm 5.2. Further,

suppose ‖ph‖ ≤ Cp <∞ and the data satisfies RaC
2
PFCgM < 1. Then,

‖∇(wγh − uh)‖ ≤ γ−1C−1
R Cp,

and
‖∇(Λγh − Th)‖ ≤ γ−1C−1

R CpMCg.

Thus, as γ → ∞, the sequence of grad-div stabilized Taylor-Hood velocity solutions {wγh} converges to uh
and the sequence of temperature solutions {Λγh} converges to Th.

Proof. We subtract (5.5a) from (5.1a) to obtain (5.9a) and (5.5b) from (5.1c) to obtain (5.9b). Denoting
eu := wh − uh and eT := Λγh − Th, we find

(∇eu,∇vh)− (qγh − ph,∇ · vh) + γ(∇ · eu,∇ · vh) = Ra

((
0

eT

)
, vh

)
∀vh ∈ Xh, (5.9a)

(∇eT ,∇sh) + b∗(uh, e
T , s) + b∗(eu,Λγh, s) = 0 ∀sh ∈ Sh. (5.9b)

Choose sh = eT in (5.9b). Then
‖∇eT ‖2 + b∗(eu,Λγh, e

T ) = 0.
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Taking the b∗ term to the other side and applying (2.2), we obtain

‖∇eT ‖2 ≤M‖∇eu‖‖∇Λγh‖‖∇e
T ‖.

After simplifying and using Lemma 5.2, we are left with

‖∇eT ‖ ≤MCg‖∇eu‖. (5.10)

Next, we choose vh = eu in (5.9a), which yields

‖∇eu‖2 + γ‖∇ · eu‖2 = (qh − ph,∇ · eu) +Ra

((
0

eT

)
, eu
)
.

Using Cauchy-Schwarz and Young’s inequalities, (2.1), (5.1b), and Lemma 5.2, we obtain

‖∇eu‖2 + γ‖∇ · eu‖2 ≤ ‖ph‖‖∇ · eu‖+Ra‖eT ‖‖eu‖

≤ γ−1

2
‖ph‖2 +

γ

2
‖∇ · eu‖2 +RaC

2
PF ‖∇eT ‖‖∇eu‖

=
γ−1

2
‖ph‖2 +

γ

2
‖∇ · eu‖2 +RaC

2
PFCgM‖∇eu‖,

which further yields

‖∇eu‖2(1−RaC2
PFCgM) +

γ

2
‖∇ · eu‖2 ≤ γ−1

2
‖ph‖2.

Thus, we obtain
‖∇ · eu‖ ≤ γ−1‖ph‖,

and using (2.3) and the assumption on ph,

‖∇eu‖ ≤ γ−1C−1
R Cp.

Furthermore, from (5.10),
‖∇eT ‖ ≤ γ−1C−1

R CpMCg.

Corollary 5.1. Under the same assumptions as Theorem 5.4, if we further assume (Xh,∇ · Xh) satisfies
the LBB condition (with parameter β0), then we obtain convergence of a modified pressure:

‖(qγh − γ∇ · w
γ
h)− ph‖ ≤ γ−1C−1

R Cp(1 +RaC
2
PFCgM)β−1

0 .

Proof. Equation (5.9a) can be rewritten as

(∇eu,∇vh)− (qγh − γ∇ · w
γ
h)− ph,∇ · vh) = Ra

((
0

eT

)
, vh

)
∀vh ∈ Xh,

and after rearranging and dividing both sides by ‖∇vh‖, with ‖∇vh‖ 6= 0, we have ∀vh ∈ Xh,

((qγh − γ∇ · w
γ
h)− ph,∇ · vh)

‖∇vh‖
=
ν(∇e,∇vh)−Ra(

(
0
eT

)
, vh)

‖∇vh‖

≤ ‖∇e
u‖‖∇vh‖+Ra‖eT ‖‖vh‖

‖∇vh‖
≤ ‖∇eu‖+RaC

2
PF ‖∇eT ‖.
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Using (5.10) and then Theorem 5.4, we obtain

((qγh − γ∇ · w
γ
h)− ph,∇ · vh)

‖∇vh‖
≤ ‖∇eu‖(1 +RaC

2
PFCgM)

≤ γ−1C−1
R Cp(1 +RaC

2
PFCgM).

Taking the infimum over vh ∈ Xh and applying the assumed inf-sup condition, we obtain

β0‖(qγh − γ∇ · w
γ
h)− ph‖ ≤ γ−1C−1

R Cp(1 +RaC
2
PFCgM).

This finishes the proof.

5.1 Numerical Results

The test problem we consider models a heated cavity of silicon oil using Ω = (0, 1)2 and Ra = 105. We
enforce u|∂Ω = 0, and for temperature we set T = 1 on the right side of the box, T = 0 on the left side of the
box, and weakly enforce the top and bottom be insulated via ∇T · n = 0. Since, we explicitly enforce T = 1
on the left side, take g = 0. We test the theory on both barycenter and uniform meshes with 1

h = 16, using
(P2, P1, P2) elements. On barycenter meshes with P2 elements, it is known that (Xh,∇ · Xh) satisfies the
LBB condition, so in this case we expect convergence of velocity, temperature, and modified pressure. On
uniform meshes, however, LBB on these spaces is not known to hold. In this case, we find convergence of
velocity and temperature, but no modified pressure convergence. Solutions were computed using Algorithm
5.1 with varying γ and Algorithm 5.2 (using α = 1000).

Results using a barycenter mesh are shown in Table 5. Here we observe O(γ−1) convergence of the
velocity, pressure, and temperature. In Figure 1, we see the sequence of grad-div stabilized Taylor-Hood
solutions converging to the pointwise divergence-free solution. Table 6 shows results using a uniform mesh,
and here we observe convergence of velocity and temperature, but no pressure convergence. In Figure 2, we
see the sequence of grad-div stabilized Taylor-Hood velocity and temperature solutions converging to the
pointwise divergence-free solution, but the pressure solution does not converge.
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γ ‖∇(wγh − uh)‖ Rate ‖(qγh − γ∇ · w
γ
h)− ph‖ Rate ‖∇(Λγh − Th)‖ Rate

0 4.766E+00 1.539E+01 1.442E-03
10−1 4.680E+00 1.524E+01 1.424E-03
100 4.166E+00 0.05 1.412E+01 0.03 1.283E-03 0.05
101 2.382E+00 0.24 8.443E+00 0.22 6.957E-04 0.27
102 4.773E-01 0.70 1.713E+00 0.69 1.311E-04 0.72
103 5.318E-02 0.95 1.912E-01 0.95 1.443E-05 0.96
104 5.379E-03 0.99 1.935E-02 0.99 1.457E-06 1.00

Table 5: Differences between grad-div stabilized Taylor-Hood solutions and pointwise divergence-free solu-
tions on a barycenter mesh.

Velocity (γ = 10−1) Pressure (γ = 10−1) Temperature (γ = 10−1)

Velocity (γ = 101) Pressure (γ = 101) Temperature (γ = 101)

Velocity (γ = 104) Pressure (γ = 104) Temperature (γ = 104)

Velocity (div-free) Pressure (div-free) Temperature (div-free)

Figure 1: Visuals of three grad-div stabilized Taylor-Hood velocity, pressure, and temperature solutions
followed by the pointwise divergence-free solutions, using a barycenter mesh.
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γ ‖∇(wγh − uh)‖ Rate ‖(qγh − γ∇ · w
γ
h)− ph‖ Rate ‖∇(Λγh − Th)‖ Rate

0 2.214E+01 5.041E+02 2.426E-02
10−1 2.213E+01 5.040E+02 2.424E-02
100 2.206E+01 0.00 5.032E+02 0.00 2.413E-02 0.00
101 2.146E+01 0.01 4.948E+02 0.01 2.319E-02 0.02
102 1.759E+01 0.09 4.296E+02 0.06 1.822E-02 0.10
103 7.259E+00 0.38 2.294E+02 0.27 6.952E-03 0.42
104 1.302E+00 0.75 9.481E+01 0.38 1.107E-03 0.80
105 1.465E-01 0.95 8.642E+01 0.04 1.204E-04 0.96
106 1.485E-02 0.99 8.650E+01 0.00 1.215E-05 1.00
107 1.487E-03 1.00 8.327E+01 0.02 1.215E-06 1.00

Table 6: Differences between grad-div stabilized Taylor-Hood solutions and pointwise divergence-free solu-
tions on a uniform mesh.

Velocity (γ = 10−1) Pressure (γ = 10−1) Temperature (γ = 10−1)

Velocity (γ = 101) Pressure (γ = 101) Temperature (γ = 101)

Velocity (γ = 104) Pressure (γ = 104) Temperature (γ = 104)

Velocity (div-free) Pressure (div-free) Temperature (div-free)

Figure 2: Visuals of three grad-div stabilized Taylor-Hood velocity, pressure, and temperature solutions
followed by the pointwise divergence-free solutions, using a uniform mesh.
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6 Conclusions

We have proven that for Stokes, Oseen, and Boussinesq systems, grad-div stabilized Taylor-Hood velocity
solutions (and temperature solutions for Boussinesq) converge to the pointwise divergence-free solution at
a rate of γ−1 as γ → ∞. Furthermore, if (Xh,∇ · Xh) satisfies the LBB condition, where Xh is the finite
element velocity space, then a modified pressure solution will also converge at the same rate. We verified
these results by testing on a barycenter mesh, where this LBB condition is satified, and on a uniform mesh,
where it is not known to be satisfied. The numerical results were consistent with the theory in all tests.

Thus, our work generalizes the work of [7, 1], which proved similar results, but only for special meshes
having specific macroelement structure.
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