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Abstract. The topological complexity is a numerical invariant which mea-

sures the number of commands an autonomous robot needs in order to move

in a space to perform a task.
To explain these ideas, we will walk through the various algebraic definitions

and provide physical examples along the way. We calculate the topological

complexity for various scenarios, starting with a single robot moving on a
simple space, we will add on to this scenario towards a final case including

more robots and more complicated spaces where they move.

Finally, we provide an example where two driverless vehicles move in a
track joining seven colleges throughout Chicago. We determine the number of

instructions as well as their content for this case study.
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Introduction

We examine the idea of topological complexity in the context of robot motion
planning through the manipulation of configuration spaces. These ideas were intro-
duced to us during an undergrad project lead by Professor Hellen Colman 1. We
study the works of mathematicians such as Michael Farber and Robert Ghrist. We
hope to show the applications of their theorems and conclusions in some real world
scenarios.

Motion planning is currently one of the most active branches of robotics. Mathe-
matics, computer science and engineering converge in the study of motion planning
to create and implement algorithms for a set of robots to move under certain con-
straints.

The question addressed in this paper is that of deciding how many instructions
are needed for a set of two driverless vehicles to move autonomously through a
theoretical track joining all the City Colleges of Chicago, and describing what these
instructions look like.

The set of two robots together with the track of a specific shape where they can
move determine what is called the configuration space for our problem.

The motion planning problem in the configuration space X consists of a process
that takes pairs of initial and final configurations (a, b) ∈ X ×X as an input and
produces as an output a path in X from a to b.

The topological complexity of a space, TC(X), is a numerical invariant that
measures the discontinuity of this process. It reflects the complexity of the problem
of choosing a path in a space X so that the choice depends continuously on its
endpoints. The topological complexity is the number of rules (or instructions)
required to specify how to move between any two points of X.

This number is in general hard to calculate. In fact, for some simple spaces like
the Klein bottle, the topological complexity is still an open problem.

By using a fundamental result of Farber [3] which establishes that the topological
complexity depends only on the homotopy type of X, our goal is to find a suitable
shape for the track T such that the configuration space of two robots moving on T
has the same homotopy type of a space with known topological complexity.

The City Colleges of Chicago is a network of seven colleges throughout Chicago.
We first design a track that passes through the seven colleges, whose positions are
fixed. Considering the way the streets and colleges are arranged, we can build
a track in a shape homeomorphic to the letter T Then we proceed to study the
topological complexity of the configuration space of two robots moving on a T -track
following the article of Ghrist on robots moving on different shaped graphs [1].

Finally we translate the theoretical results to our problem and describe the two
instructions that we need to provide to the driverless shuttles to perform their task.

Through our research studying papers written on topological complexity, we
have gathered enough to write about it ourselves and include some conclusions we
drew. In doing so, we want to encourage anyone interested to add on to this new
and promising area of study.

1HC is partially supported by a Simons Foundation Grant
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1. Physical space

In this paper we study motion planning for N robots r1, ...., rN in a space Γ.
The physical space Γ is simply the space in which the robots are allowed to be.

1.1. Examples of Physical Spaces. A basic example of a space in which robots
could move is a segment I = [0, 1]. The robot could be anywhere between the ends
of the segment. This segment is the physical space of the motion planning problem.
So we write Γ = I.

We could also connect the two ends of the segment and have our robot move
around in a circle S1. Here we have no endpoints and our robot could move any-
where around the circle, Γ = S1.

Our main example is to have the robot move in a T -shape track. We imagine the
shape to be three segments with the beginning of each segment being connected.
Here Γ = T .

1.2. Number of Robots. Increasing the number of robots in our physical space
comes with the problem of their movements being restricted by each other. Since
it is impossible to have two objects occupying the same space, we cannot have two
robots in the same position in our physical space. For example, if we have two
robots moving around on I, the robots are never able to switch positions. A robot
in this space could also never reach the end past the other robot. This avoidance
of collisions is a limitation on their movements. We want to write a strategy for
the robots to move on their own without collisions. To this end we need to take
into account the limitations given by the presence of another robot within the same
physical space and the shape of the physical space itself. This is where the idea of
motion-planning comes in. Motion-planning is the idea of having two points, initial
and final positions, and finding some feasible path between them.

2. Configuration Space CN (Γ)

The physical space does not change with the number of robots, but the space of
possible positions of the system as a whole does. The physical space stays the same
because it is by definition where the robots are. With only one robot the physical
space could also be described as the space in which the robot could move. With
an added robot this space of possible positions changes. No longer can the original
robot move anywhere it wants. The idea then is to come up with a representation
of this new space of possible positions. That is, the space that specifies the position
of every robot in the physical space. This notion will be called configuration space.

335



 

2.1. Definition of Configuration Space. Let’s assume that a robot r1 can be
placed anywhere in the physical space Γ. The set of points x1 that represents all
possible states of r1 on the physical space is just Γ. That is, the configuration space
of one robot moving on a physical space is just Γ itself. Now if we were to add one
more robot, r2, on the same physical space, the set of points that represent all of
its theoretical states is the Cartesian product Γ × Γ. Here the Cartesian product
represents the idea of a pair of positions (x1, x2), one for robot r1 and another for
robot r2. Since no two different robots can lie on the same point, we must subtract
the pairs of points representing this scenario from our set. We call ∆ the set of
positions where at least two robots lie on the same point. As we add more and
more robots, we have to eliminate more and more positions. Formally, we define
the configuration space to be CN (Γ) := (Γ × Γ × ... × Γ) −∆ where the diagonal
∆ := {(x1, x2, ..., xn) ∈ ΓN : ∃xi = xj , i 6= j}.

2.2. Examples of Configuration Spaces. We now describe different configura-
tion spaces corresponding to the physical spaces described in the previous section.
As we change the number of robots in the same physical space, the configuration
space becomes more complicated.

2.2.1. Robots moving on an interval. We know that for one robot in a physical
space Γ = I, where I is some interval, the configuration space X = C1(I) is equal
to I, X = I. We want to visualize what this configuration space looks like for two
robots.

We know that each robot could be on any point on the interval. So to represent
the position of each robot we get two full intervals, from the beginning to end, being
multiplied. We can describe this using the Cartesian coordinate system where x
represents the position of one robot and y represents the position of the other. The
position in the coordinate system is then determined by how far along the interval
the robots are on the physical space. So for this simple example we are able to
visualize its configuration space as a square from which we have to subtract the
diagonal ∆. Therefore the situation of two robots moving on a physical space I is
modeled by a configuration space X = C2(I) = I × I −∆. See Figure 3.

2.2.2. Robots moving on a circle. In the same way, the configuration space of one
robot moving on a circle is X = C1(S1) = S1. The configuration space for two
robots moving on a circle, is X = C2(S1) = S1 × S1 − ∆. This gives us a torus
with the diagonal ∆ making a curve around both circles of the torus once. If we
cut the torus along this curve, we could bend the torus into a cylinder, where its
circular edges, at both ends represent the diagonal ∆ that we cut off. See Figure 1
and Figure 2.
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Figure 1. The black line represents the diagonal that is not part
of the configuration space C2(S1)

Figure 2. Top and bottom view of the configuration space C2(S1)

3. Paths in configuration spaces

If we want to move N robots from an initial position to a final one, we need
to describe a certain choreography that allows this movement to happen without
collisions. Here is where working with configuration space is beneficial. Knowing
the shape of the configuration space we can study the paths between different
configurations that are possible. This translates to paths on the physical space
that avoid collisions, which are our valid paths.

Suppose we have just one robot r1 in the physical space Γ. The configuration
space C1(Γ) is the same as the physical space, C1(Γ) = Γ. The position x1 ∈ Γ for
the robot r1 has a corresponding state c1 ∈ C1(Γ) with x1 = c1. This holds true for
the motion of r1, as well. As we move it from some configuration to another, the
path that r1 follows is the same both in the physical space Γ and in the configuration
space C1(Γ). Now, if we add another robot r2, then our configuration space changes
from C1(Γ) = Γ to a new space C2(Γ) which is not Γ anymore. Our similarity does
not carry over; we can no longer picture the spaces to be the same. This is due
to the description of C2(Γ) in which every point in the new space represents a
configuration of two robots, so in particular our configuration space has higher
dimension than Γ. As we move along some path in C2(Γ) we are describing a
collective change of configurations for r1 and r2.

3.1. Movements along C2(I). We can start with our basic example of two robots
moving on an interval I to visualize a path along the configuration space C2(I) =
I × I −∆. As we have seen before, this configuration space is just the union of two
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triangles. Since the space is not connected, the only possible paths are contained
in one of those triangles. A path that connects a point on one triangle and another
point on the other triangle does not exist. See Figure 3.

Figure 3. Examples of possible paths in C2(I)

So what does this mean in terms of movement on the physical space I? Well,
simply that we cannot have one robot move to an end of the interval with the
other robot in its way. A path in the configuration space contained in one of the
triangles corresponds to a choreography where both robots are moving from an
initial configuration to a final one without involving any interchange of positions
between them. The robots cannot perform any task involving swapping places just
because there is not enough room in the interval for this to happen.

3.2. Movements along C2(S1). Now we can go back to our example of two robots
moving on a circle, whose configuration space C2(S1) is a cylinder. The robots can
move on the circle in any direction so long as they do not collide. So our paths
should be contained in the cylinder C2(S1). We can see that this space is connected
and there is always a path between any two points. Some of the possible paths are
shown in Figure 4. All these paths correspond to movements of the two robots on
the circle, from some initial position to a final one, without collisions. Observe that
the shape of the physical space Γ = S1 provides more room for all the changes of
positions to be possible now.

338

bmh
Text Box
               TOPOLOGICAL COMPLEXITY FOR DRIVERLESS VEHICLES



TOPOLOGICAL COMPLEXITY FOR DRIVERLESS VEHICLES

Figure 4. Paths along the configuration space C2(S1)

4. Main example: Γ = T

4.1. Configuration space C2(T ). We now consider the example of two robots
moving on a track T . To construct the space C2(T ) we begin as follows. First, we
build the cartesian product T × T . This is the space of pairs of points where the
first component belongs to the first space T , i.e. represents the position of the first
robot. Likewise, the second component in the pair represents the position of the
second robot.

We construct first a graph T and extrude it by a single interval corresponding to
one of the edges of the second graph T . At this stage, the points of this space cor-
responds to the first robot being anywhere and the second being in that particular
interval. Next we continue to extrude the first T by the next edge of the second T
at a slight angle, to the right. Finally, we repeat the extrusion with the third edge
to the left. The points on the surface obtained represent all theoretical positions of
two robots on a space T . Our virtual modeling of the space as well as its physical
plastic model helped us to visualize the space T × T as a surface that cannot be
embedded in the three dimensional space. See Figure 5.
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Figure 5. T × T , where the dashed lines are the diagonal ∆

From this space of theoretical positions, we need to subtract the ones that are
not possible: all the points in T × T corresponding to both robots being exactly at
the same place in T .

The diagonal ∆ in this case can be seen as the union of the diagonals of the
squares corresponding to the robots being in the same edge. If we take out these
set of points, we can then picture our C2(T ) = T × T − ∆ as a surface that we
can embedded in the three dimensional space. See Figure 6. We actually built this
space in Rhino [2], and printed a plastic model of it using a 3D-printer. See Figure
7.

Figure 6. T × T −∆

We call this configuration space “flower” and refer to the quadrilaterals and
triangles as “petals”. Topologically there is no difference between our original
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C2(T ) and our flower. In fact, C2(T ) is homeomorphic to the flower. Each square
of T × T that was cut in half by the diagonal is homeomorphic to the triangular
petals, and the remaining uncut squares are the six quadrilateral petals of the
flower. Notice that in the center of our flower there is a hole corresponding to the
intersection of the three diagonals that we cut off. We refer to this hole as the
origin of C2(T ). Also notice that although both the product T × T and the flower
are two dimensional spaces, the flower can be fully viewed in a three dimensional
space whereas the original space T ×T requires a four dimensional space to live in.
We use this visualization of the flower to describe our movements along C2(T ).

Figure 7. 3d-printed model of C2(T )

4.2. Movements along C2(T ). Points in the triangular petals correspond to the
positions in the physical space where both robots are in the same edge. The re-
maining quadrilateral petals correlate with the positions in which the robots are in
different edges. Since the flower is connected, we can draw a path from a point to
any other point in the flower.

For instance, if we place two points on the flower so that the first point lies on
the outermost point on a petal and we place the final point on the outermost point
of the petal that lies directly antipodal to the first, then we can draw a path in
C2(T ) between these two points. The shortest path in the three dimensional space
is a straight line segment that passes through these two points. The problem with
this path however is that it passes through the origin in the middle, which is part
of the diagonal ∆. So, this path is not in C2(T ). To avoid the origin, we can go
around it in the left or right direction. Which do we choose? This will be part of
the instructions that we will give to the robots.
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In this case we do not really care, so we choose for instance the one that goes
clockwise. The question now becomes, what does this mean physically, how does it
connect to our physical space Γ?

If we look at our initial point on the flower C2(T ) we observe that it is a point
in the petal located the furthest away from the origin. This means that the point
is furthest away from the diagonal in T × T and as such the robots are furthest
away from one another on Γ. We can imagine this to be each robot at the end
of different intervals. Analogously, the final point in the flower corresponds to the
robots being at the end of the same intervals, but now switched.

Then, as we move by the petal on our straight line towards the center, the two
robots on Γ are moving closer to each other. When the robots get sufficiently close
to that same intersection position in Γ, they have a choice either the first robot
can stop and allow the second to move on ahead, or vice verse, the second stops
and allows the first too move ahead. These possible choices correspond to the two
possible curves in C2(T ) described before.

5. Topological Complexity

5.1. Continuity of the Motion Planning. A motion planning algorithm is a
set of rules that to each pair of positions (initial and final) assigns a path between
them.

In our case, we want to provide the initial and final positions of our robots and
we want to obtain the path that they should follow to move from the initial position
to the final one, without collisions.

A path in a space is defined as a function from an interval to the space. A path
in X between a and b is a function α : I → X such that α(0) = a and α(1) = b. Let
PX be the space of all possible paths in X. The evaluation map π : PX → X ×X
assigns to each path its initial and final points, i.e. π(α) = (α(0), α(1)). We say
that s : X ×X → PX is a section of π if π ◦ s = id.

Definition 5.1. [3] A motion planning algorithm is a section s of the evaluation
π. That is, a map s : X ×X → PX which assigns to each pair (a, b) ∈ X ×X, a
path in X between a and b.

This section does not always exist. For an example of a situation in which the
section does not exist, consider the case of two robots moving on an interval I.
Since we know that the configuration space X = C2(I) = I × I −∆ is the disjoint
union of two triangles, we cannot define any section s at a point (a, b) when a
belongs to one of the triangles and b belongs to the other.

If a space is not connected, the section does not exist. Since there is nothing
more to say about these spaces we will work with connected configuration spaces
from here onward.

We are interested in motion planning algorithms in which the choice of the path
is made in a continuous manner.

Informally, when X is a metric space, a motion planning algorithm s : X×X →
PX is said to be continuous if and only if, for any small perturbations of initial
and final positions, we obtain just a small change in the output path.

For an example of a section that is not continuous, consider one robot moving
on a circle S1 (X = C1(S1) = S1) and the motion planning s : S1×S1 → PS1 that
assigns to each pair of positions, the shortest path γ between them. Let’s say we
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have initial and final points (a, b) at antipodal positions in the circle S1. If we ask
the motion planner to give us a path between these points, it gives us a clockwise
path γa,b. But if we move a slightly over to a′ or to a′′, the motion planner redirects
the path to now give us two entirely different paths γa′,b and γa′′,b that follows the
opposite side if the circle as in Figure 8.

Figure 8. Discontinuity
TOPOLOGICAL COMPLEXITY FOR DRIVERLESS VEHICLES 11

a′ a a′′

b

γa′,b γa′′,b

There is a discontinuity in the case of this motion planner for a robot moving on
a circle.

5.2. Homotopy Invariance. We will briefly discuss the idea of homotopy. Two
spaces are homotopically equivalent if one can be continuously deformed into the
other. We denote this homotopy equivalence as X1 ≃ X2. For instance, a disk
D is homotopically equivalent to a point p and a cylinder S1 × I is homotopically
equivalent to a circle S1. We write D ≃ p and S1 × I ≃ S1.

Definition 5.2. A space X is contractible if it is homotopically equivalent to a
point.

For example, a disk D is contractible.
Farber proved that there does not exist any continuous section in the case of the

circle.

Theorem 5.3. [3] A continuous motion planner s : X × X → P (X) exists if and
only if the space X is contractible.

In the example described above of a robot moving on a circle, the configuration
space X = S1 is not contractible and the motion planner needs another rule to
account for all antipodal points, which takes us to the idea of topological complexity.

5.3. Topological Complexity. In our example of a motion planner for one robot
on a space S1, we found that we needed two rules to cover all possible points in
X × X, such that the local section is continuous. The minimum number of these
rules is called topological complexity.

Definition 5.4. [3] The topological complexity TC(X) is the least integer k such
that X ×X may be covered by k open sets {U1, ..., Uk}, on each of which there is a
continuous section si : Ui → PX of the evaluation map π. These sets Ui are called
domains of continuity.

For our robot moving on a circle, these sets consist of the two subsets U1 and
U2, described below. One set covers all antipodal points, the other covers all other
points.

(1) V1 = {(x, y)|x and y are antipodal points}
(2) U2 = all other pairs

There is a discontinuity in the case of this motion planner for a robot moving on
a circle.

5.2. Homotopy Invariance. We will briefly discuss the idea of homotopy [4].
Two spaces are homotopically equivalent if one can be continuously deformed into
the other. We denote this homotopy equivalence as X1 ' X2. For instance, a disk
D is homotopically equivalent to a point p and a cylinder S1 × I is homotopically
equivalent to a circle S1. We write D ' p and S1 × I ' S1.

Definition 5.2. A space X is contractible if it is homotopically equivalent to a
point.

For example, a disk D is contractible.
Farber proved that there does not exist any continuous section in the case of the

circle.

Theorem 5.3. [3] A continuous motion planner s : X ×X → PX exists if and
only if the space X is contractible.

In the example described above of a robot moving on a circle, the configuration
space X = S1 is not contractible and the motion planner needs another rule to
account for all antipodal points, which takes us to the idea of topological complexity.
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5.3. Topological Complexity. In our example of a motion planner for one robot
on a space S1, we found that we needed two rules to cover all possible points in
X ×X, such that the local section is continuous. The minimum number of these
rules is called topological complexity.

Definition 5.4. [3] The topological complexity TC(X) is the least integer k such
that X ×X may be covered by k open sets {U1, ..., Uk}, on each of which there is a
continuous section si : Ui → PX of the evaluation map π. These sets Ui are called
domains of continuity.

For our robot moving on a circle, these sets consist of the two subsets U1 and
U2, described below. One set covers all antipodal points, the other covers all other
points.

(1) V1 = {(x, y)|x and y are antipodal points}
(2) U2 = all other pairs

Let U1 be a small neighborhood of V1. Then {U1, U2} is the covering by domains
of continuity.

So our topological complexity TC(S1) = 2, since we know already that is not
1 because S1 is not contractible. Farber studied the topological complexity for all
spheres:

Theorem 5.5. [3] TC(Sn) = 2 if n is odd or 3 if n is even.

In our case n = 1, so the previous theorem guarantees that the topological
complexity is equal to 2.

5.4. Homotopy Invariance. We will briefly discuss the idea of homotopy. Two
spaces are homotopically equivalent if one can be continuously deformed into the
other. We denote this homotopy equivalence as X1 ' X2. For instance, a disk
D is homotopically equivalent to a point p and a cylinder S1 × I is homotopically
equivalent to a circle S1. We write D ' p and S1 × I ' S1.

Farber proved that the topological complexity of a space is an invariant of ho-
motopy type. That is, if we can deform a space into another which is homotopically
equivalent, the topological complexity of the spaces does not vary.

Theorem 5.6. [3] If X1 ' X2, then TC(X1) = TC(X2)

This theorem allows us to calculate the topological complexity of any space with
the same homotopy type than a circle, since we know already that TC(S1) = 2.

6. Topological Complexity of C2(T )

We know that the topological complexity of one robot moving in a circle, TC
(C1(S1)), is 2 because the configuration space is again the circle C1(S1) = S1

and we showed that TC(S1) = 2. For more complicated configuration spaces it
is harder to calculate the topological complexity. We can use Farber’s homotopy
invariance theorem to this end. Recall that if two configuration spaces are homo-
topically equivalent, then their topological complexity is the same. We can say that
if C2(Γ) ' X, then TC(C2(Γ)) = TC(X).

So we can try to homotopically deform the space C2(Γ) into another space X
whose topological complexity we already know. To visualize this we can imagine
the flower C2(T ) pictured in Figure 6 being squished down to form a circle. We can
bring down the triangles to give you a flat shape and because the space has a hole
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in the middle, we can deform it into the circle we want. Using Farber’s theorem,
we conclude that our configuration space of two robots moving on a T -track has
topological complexity of 2, since it is homotopically equivalent to C1(S1).

6.1. Domains of Continuity. Consider the embedding of the flower in R3 as in
Figure 6. By identifying the flower with the image of this embedding we can say
F ⊂ R3.

Let F̄ be the projection of F on R2, .i.e. F̄ = {(x, y) ∈ R2|(x, y, z) ∈ F}.
We call ray in F̄ the half-line l determined by the origin and any point in the

projection of the flower F = C2(T ). The antipodal ray of l is the half-line l′

determined by the origin and the antipodal point of any point in l.
Since we proved that TC(F ) = 2, we know that there is some discontinuity

in the motion planning for this configuration space. Before, for C1(S1), we were
able to describe the domains of continuity by the two subsets over which there is
a continuous section s. One subset contains all pairs of antipodal points and the
other contains all other pairs. Since we know that the flower F = C2(T ) can be
deformed into S1 = C1(S1), we can translate these sets into the configuration space
C2(T ) homotopically. So the subset containing all antipodal pairs extends to C2(T )
to be the subset of pairs of points that lay on antipodal rays in the flower.

These points in the flower F translate to several different scenarios in the physical
space T . Given an initial configuration (pair of points representing position of
each robot), the goal is to identify what final configurations in the physical space
correspond to the points laying in antipodal rays.

The initial position of the robots determines a point P = (a, b, c) in the flower
F . We have a ray l joining the origin and the projection of the point P .

We call antipodal set of P , A(P ), the set of points in the flower whose projection
is in the antipodal ray l′,

A(P ) = {(x, y, z, ) ∈ F |(x, y) ∈ l′}
Then we describe our first set of initial and final configurations U1 as a small

neighborhood of V1 = {(P, P ′) ∈ F | P ′ ∈ A(P )}. The set U2 contains all other
pairs.

To identify the corresponding positions in the physical space, we observe that
if the initial and final configurations are in antipodal petals of F , then the four
positions in the physical space corresponding to the initial and final positions of
the first and second robots must lie in a single leg or in the union of two legs of the
track T . We can consider the latter union of two legs as a single interval. We then
describe the antipodal positions in terms of their order in the interval:

(1) The initial position of robot 1, then the final position of robot 2, then the
final position of robot 1, then the initial position of robot 2.

(2) The final position of robot 1, then the initial position of robot 2, then the
initial position of robot 1, then the final position of robot 2.

with exact placements determined by the slope given by initial positions of both
robots. We refer to these two conditions as the antipodal conditions.

So, the subset U1 contains these pairs of initial and final positions. The other
subset U2 contains all other pairs.

6.2. Motion Planning Algorithm. So we can say that for our problem of plan-
ning the movement of two robots on a T -track from any initial positions to any
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final positions, we need the two continuous motion planners, U1 and U2, explained
above.

Each robot knows how to move from any initial position to any final one. Given
these two positions, it would first check if any of the antipodal are met. If this is not
true, the planner would tell the robot to take the shortest path on the configuration
space C2(T ), giving us the shortest distance traveled in the physical space T . If
the contrary is true, then the planner tells the robots to take the shortest path that
goes clockwise on C2(T ).

On the physical space, this translates to something like a right-of-way rule where
the robot that is on the right-most leg always moves into the unoccupied leg first.
If both robots occupy the same leg, the robot closer to the origin moves into the un-
occupied, right-most leg first. This results in the shortest possible distance traveled
by the robots.

7. City Colleges of Chicago driverless shuttle

To conclude, we take a look at our real world example as an application of motion
planning of C2(T ). First, we let all the colleges be joined by a T -track as in Figure
9.

Figure 9. City Colleges of Chicago
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Then, we place two distinct robot shuttles in the track. One shuttle is red and
will transport only smokers. The other is blue and will only transport non-smokers.
Any smoker or non-smoker is allowed to jump into their respective shuttles at any
point on the track. Once in the shuttle, the passenger will tell it where he wants to
go. The two shuttles are able to transport the passengers using the shortest route
while avoiding collisions.

We know from the previous section that the motion planning algorithm needed
to accomplish this requires only two instructions. The instructions need to account
for all possible initial and final positions for both shuttles. The initial positions
for the shuttles are wherever the shuttles were left last. The final positions are
wherever the passengers would like to go. Because of this the final position of one
instance will always be the initial position of another. Using these bases, we can
describe the two instructions as such:

(1) If the antipodal conditions are not met for the shuttles, take the shortest
path.

(2) Otherwise, the shuttles follow a right-of-way rule, where the right-most
shuttle moves into the unoccupied leg first.

The two shuttles can now transport their respective passengers around au-
tonomously, using this basic algorithm. For instance, the red car is transporting
a smoker from Kennedy-King to Olive-Harvey and the blue car is transporting a
non-smoker from Olive-Harvey to Harold Washington at the same time. Given our
algorithm, the red car would move into the leg between Harold and Wright, so as
to let the blue car move into the leg between Harold and Daley. The red car would
then move to deliver the smoker to Olive-Harvey and the blue car would deliver
the non-smoker to Harold.
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