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Abstract: Sproxil, Inc. is a company which produces PINs that manufacturers attach to
products and which are then used by consumers to verify the authenticity of the product
manufacturer. The goal of this work is to use existing PIN verification data provided by
Sproxil to obtain a model for product shelf life: the length of time between PIN generation
and product verification. We present several models that can be used to predict information
about the shelf lives of various batches of products. We use maximum likelihood estimation
to fit gamma distributions, which model the distributions of shelf lives. Cluster analysis is
used to determine whether certain types of product batches have similar verification behavior.
We find that the size of a product batch has an impact on how quickly verifications occur.
Finally, regression analysis is used to find predictive relationships between variables related
to shelf lives. We find that certain variables measuring how quickly the verification cycle
begins are strong predictors of later stages in the verification cycle.

1 Introduction

Sproxil, Inc. helps consumers determine whether products they purchase are genuine or
counterfeit. The company produces labels containing unique PINs (personal identification
numbers), which are placed on products by manufacturers. Consumers can then send these
codes (e.g. via text message) and receive a response from Sproxil such as “genuine,” “fake,”
or “used.”

The service that Sproxil provides helps to protect consumers from purchasing counterfeit
products. There is a significant need for this service, particularly in emerging markets where
counterfeit drugs are common and anti-counterfeiting measures are difficult to implement.
Incidentally, Sproxil’s data also provides insight into these emerging markets where little is
known about the manner in which products sell. Our goal as defined by Sproxil was to use
this data to produce a model for the shelf lives of products.

This work was completed as a semester-long project in a mathematical modeling course
at Kenyon College in Gambier, Ohio, as part of the PIC Math program (Preparation for
Industrial Careers in Mathematical Sciences1).

2 Research Problem

The data we received from Sproxil consist of 330 CSV (comma-separated value) files, each
of which corresponds to a single product. We received data strictly from products verified in
Nigeria and only those verifications that generated a “genuine” response. Each row within
the files corresponds to a single unit of the product that was verified as genuine. Note that
all client and product identification information was encrypted.

The columns contain data including the PIN generation date (the month, day, year, and
time that the PIN was produced), the verification transaction date (the month, day, year,
and time that the PIN was verified by the user), the product and client IDs (unique numbers

1Support for this Mathematical Association of America (MAA) and Society for Industrial and Applied
Mathematics (SIAM) program is provided by the National Science Foundation (NSF grant DMS-1345499).
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corresponding to the particular product and the client producing that product), and broad
and specific industry categories.2

We used the verification transaction dates and PIN generation dates to create a new
column of data containing the PIN shelf life. This is the difference, in days, between the
PIN generation date and the verification date. We computed the shelf lives in Excel, but
they can also be computed using the statistical computing language R [4], which we used
for most of our later analysis.

Sproxil asked us to plot and model PIN shelf lives as well as PIN shelf lives grouped
by PIN generation batch. In order to group shelf lives by PIN generation batch, we first
converted the PIN generation date (which is formatted as a date and time) into a date only.
We then separated each CSV file (which corresponds to a single product) into multiple files,
one for each PIN generation date. Sproxil was interested in whether certain batches of PINs
had different shelf life distributions than the rest. They were also interested in seasonal
effects and the effect of the industry category on PIN shelf life.

3 The Gamma Distribution and Maximum Likelihood

Estimation

3.1 The Gamma Distribution

When we plotted histograms of PIN shelf lives for a PIN generation batch, we found that
they often followed a distribution which resembled a gamma distribution. We fit gamma
distributions to our data, and we found by visual inspection that the gamma distribution
often provides a good model for the distributions of the shelf lives.

The gamma distribution has two parameters: the shape parameter α and the scale pa-
rameter β, both greater than zero, and the distribution has the density function:

f(x, α, β) =
xα−1e−x/β

Γ(α)βα
for x > 0, where Γ(α) =

∫ ∞
0

xα−1e−xdx.

3.2 Maximum Likelihood Estimation

Maximum likelihood estimation (or MLE) is a method used to approximate the parameters of
a distribution which best fits a given set of observations. We used an algorithm presented in
[2] to write an R-script that computes the maximum-likelihood estimates of both parameters
of a gamma distribution.

A likelihood function gives, roughly speaking, the probability of observing the data
x1, . . . , xn given a probability model. The goal of maximum likelihood estimation is to
find the parameters of the probability distribution which maximize the likelihood function.
This maximizes the “agreement” of the observed data with the proposed probability model.
If we model our data with a gamma distribution with shape parameter α and scale parameter

2Some industry categories are not known or not applicable. Examples of broad categories are “Anti-
Infective” or “Cosmetics,” and examples of specific categories are “Anti-Malarial” or “Body Cream.”
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β, the likelihood function is:

L(α, β|x1, . . . , xn) =
n∏
i=1

(
xα−1i

Γ(α)βα
exp

(
−xi
β

))
=

(
1

Γ(α)βα

)n( n∏
i=1

xi

)α−1

exp

(
− 1

β

n∑
i=1

xi

)
,

where x1, . . . , xn are the observed data. The method of maximum likelihood estimation
says that the best model is the one with the parameters α̂ and β̂ that maximize the likeli-
hood function (α̂ and β̂ denote the estimators of α and β, respectively). A more detailed
explanation of the mathematics can be found in Appendix A.

3.3 Modeling PIN Shelf Life with Gamma Distributions

We used the method of maximum likelihood estimation to fit gamma distributions to the
PIN shelf life data for each PIN generation batch. Often the minimum shelf life is quite large
(several hundred days). When this is the case, the fitted gamma distribution overestimates
the shelf life distributions before the minimum shelf life because the fitted model predicts
that verifications begin before they actually do. We can see an example of this in Figure 1
where the minimum shelf life is 359 days.

In order to account for this, before fitting a distribution we first created a vector of “min-
shifted” shelf lives. These are obtained by subtracting from the raw shelf lives the minimum
shelf life among all items in the PIN generation batch. In this way, the distribution of min-
shifted shelf lives begins at zero as does the gamma distribution.3 The result of fitting a
gamma distribution to the min-shifted shelf life is shown in Figure 2.

We assessed the fit of these gamma distributions by inspecting the histograms. We
noticed that sometimes near the beginning of the verification cycle, there is a period of a
few months in which no verifications occur. When this is the case, the gamma distribution
still overestimates the shelf life distribution at the beginning even though the shelf lives
are min-shifted. We can see an example of this in Figure 3. When there are long periods
in which no verifications occur, the minimum shelf life is not a good measure of when the
verification cycle truly begins.

We decided that it would be better to model the PIN shelf life after verifications begin
to occur consistently. To make this change, we successively removed the smallest data point
until the first and tenth data points were within 5 days of one another. This means that
ten verifications occurred within five days. We then shifted the shelf lives again by the new
minimum and re-fit a distribution. We called this new data the truncated shelf life, and we
called the verification date corresponding to the smallest truncated shelf life the minimum
truncated verification date. This date is a good indicator of when verifications begin to
occur consistently. After removing outliers through this truncation process, the maximum
likelihood gamma distribution appears to have a better fit, as shown in Figure 4.

3Note that the R-script that performs MLE takes the logarithm of each data point. Since the smallest
min-shifted shelf life is zero and the logarithmic function is undefined at zero, we must truncate any zeros
before passing our data to the function.
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Figure 1: If the minimum shelf life
is large, then the gamma distribution
does not match the shelf life distribu-
tion well to the left of the minimum
shelf life.

Figure 2: Fitting a gamma distribu-
tion to the min-shifted shelf lives gen-
erally gives a better fit than fitting a
gamma distribution to the raw shelf
lives.
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Figure 3: After the first verification,
there is a period of 83 days in which
no verifications occur.

Figure 4: After removing the outlier,
the maximum likelihood gamma dis-
tribution appears to provide a better
fit for the shelf-life data.
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3.4 Database of PIN Batch Variables

After implementing maximum likelihood estimation to approximate shape and scale param-
eters for each PIN generation batch, we compiled a database of our results. Each entry in
the database contains information about one PIN generation batch. Our database includes
statistics that were already known about a batch, such as batch size, as well as information
generated from our modeling procedures. We used these characteristics to identify similar
and dissimilar batches through cluster analysis and linear regression. Some of the variables
we examined are listed in Table 1.

shape The shape parameter of the gamma distribu-
tion fitted to a PIN batch

scale The scale parameter of the gamma distribution
fitted to a PIN batch

actual.50th * The actual 50th percentile of shelf life, i.e. the
time in days by which 50% of PINs had been
verified

estimated.50th * The estimated 50th percentile of shelf life, which
is calculated by integrating the fitted gamma
distribution function

diff.50 * Actual 50th percentile subtracted from the es-
timate

n.obs Size of a PIN batch (prior to removal of out-
liers)

min.shelf.life Minimum shelf life in a dataset
min.trunc.shelf.life Minimum shelf life once outliers are excluded
min.ver.date Date at which item with minimum shelf life was

verified
min.trunc.ver.date Date at which item with minimum truncated

shelf life was verified

Ti **
The time (in days) after the min.trunc.ver.date
by which 1000i units have been verified, where
i = 1, 2, 3, 4, 5.

Table 1: Variables included in the database of PIN generation batches.

We also retrieved the season, year, and month of the PIN generation date, minimum
verification date, and minimum truncated verification date.

The variables diff.50 and diff.90, which represent the respective errors of 50th and 90th

percentile estimates, can be used as a preliminary assessment of the gamma distribution’s fit
to the shelf lives. The mean of diff.50 was -9.86 days with a standard deviation of 18.65 days,
while diff.90 had a mean of 12.46 days with a standard deviation of 28.06 days. For reference,
the average of actual.50th is 153.22 days, and the average of actual.90th is 274.83 days. Both
percentile estimations tend to be quite accurate, approximating their corresponding actual
percentiles within two weeks.
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4 Cluster Analysis

4.1 Theory

Cluster analysis is an exploratory data analysis technique that groups numerical data into
clusters of similar data points using a chosen distance metric. The clustering solution is
found by one of a number of clustering algorithms that aim to have each data point be as
similar as possible to other points in its assigned cluster and as different as possible from
points in other clusters. Because the clustering algorithms utilize the distances between data
points, one begins by generating a matrix M of the distances between every pair of points
with respect to the chosen metric. While there are many different clustering techniques, the
methods of clustering we focused on were k-means and fuzzy clustering.

As described in [1], k-means clustering algorithms take as input the distance matrix M
described above, a positive integer k designating the number of clusters to create, and k
initial cluster centers. The cluster centers will be the averages of the points in their cluster.
One may specify initial cluster centers; however, many algorithms allow for starting with
random cluster centers. The clustering algorithm then uses this information to partition
the data set into the k “best” clusters for the data set. The “best” clustering solution is
defined to be that which minimizes the within group sum of squares or WGSS. Essentially,
the WGSS is the sum the squared Euclidean distance from each point to the average of
its cluster. If our data has q parameters or coordinates and we want to partition it into k
clusters denoted C1, . . . , Ck, we can denote the lth cluster center as x̄(l). Then the WGSS
can be computed with the following formula:

WGSS =

q∑
j=1

k∑
l=1

∑
i∈Cl

(xij − x̄(l)j )2.

A k-means clustering algorithm finds the clustering solution that minimizes the above
expression by following these steps:

1. Assign each data point to the cluster whose initial center is closest.

2. Recalculate cluster centers to be the average of the points now in the cluster.

3. Calculate the change in the within group sum of squares that would result from moving
a data point to a different cluster. Make those changes that would decrease the WGSS.

4. Repeat steps 2 and 3 until no change improves the WGSS.

In order to determine the number of clusters to use in k-means clustering, we plot the
WGSS for the k-means solution against the number of clusters. The WGSS necessarily
decreases as the number of clusters increases, but adding more clusters is not always useful.
To determine an appropriate number of clusters, we look for a particularly sharp drop in the
WGSS. For instance, if the WGSS decreases substantially when the number of clusters is
increased from two to three but only slightly when the number of clusters is increased from
three to four, then we would choose to use three clusters. More information on choosing the
number of clusters can be found in [1].
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Fuzzy clustering is very similar to k-means clustering. However, rather than considering a
data point’s membership in a particular cluster to be a binary state, the algorithm calculates
the probability a data point belongs to each cluster. This process can still return a non-fuzzy
or “crisp” clustering solution if we assign each data point to the cluster to which it is most
likely to belong. When we ran k-means and fuzzy clustering on our data, we found that
fuzzy clustering often gave more intuitive solutions.4

4.2 Implementation

We used cluster analysis on Sproxil’s data by taking combinations of numerical data from
the spreadsheet described in Section 3.4, computing the distance matrix for this data using
the Euclidean distance metric, running k-means and fuzzy clustering on this matrix, and
comparing the resulting clustering solutions to categorical variables. Before computing the
distance matrix, we scaled the numerical data if different variables had significantly different
ranges.

Sproxil expressed to us that they were interested in knowing whether categorical variables
like product type and season of PIN generation affected a product’s shelf life curve. We
clustered on many combinations of numerical data, such as the shape and scale parameters
of fitted gamma distributions, the actual 50th and 90th percentiles, the difference between
the actual and estimated 50th and 90th percentiles, and the mean and standard deviation
of the fitted gamma distributions. However, whenever we compared the results to one of
the categorical variables mentioned, we did not find a strong correlation. For example, the
following table is the result of comparing the two-cluster solution for the shape and scale
parameters of the fitted gamma distributions to whether a product is pharmaceutical or
non-pharmaceutical.

Pharma Non-Pharma
Cluster 1 116 33
Cluster 2 182 29

Table 2: Comparing cluster assignments to a categorical variable.

Note that the pharmaceutical and non-pharmaceutical products are mixed relatively
evenly between the clusters. From this, we conclude that whether a product is pharmaceuti-
cal or non-pharmaceutical does not have a strong effect on the parameters of that product’s
fitted gamma distribution. Since we got similar results from every attempt to compare clus-
tered data to type of product and season of PIN generation date, we concluded that these
variables appear not to affect verification cycles as much as one might expect.

We did, however, find an interesting relationship using cluster analysis. We performed
fuzzy cluster analysis using the variables T1 through T5 to produce three clusters of PIN
generation batches. The results are shown in Figure 5.

4K-means clustering often grouped all outliers together.
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Figure 5: The result of running fuzzy clustering on the PIN generation
batches using the variables T1 through T5.

5

We compared the cluster assignments to the batch sizes to see if batch size has an effect
on cluster assignment. The results are summarized in Table 3. We found that Cluster 1 tends
to contain the smallest PIN generation batches, Cluster 2 tends to contain slightly larger
PIN generation batches, and Cluster 3 tends to contain the largest PIN generation batches.
In particular, almost all PIN generation batches of size 90,000 or greater were assigned to
Cluster 3.

Batch Size (in 10,000s)
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-36 Mean Batch Size

Cluster 1 23 14 3 2 1 1 1 0 0 0 14,396
Cluster 2 23 15 15 6 0 2 2 1 1 2 23,636
Cluster 3 3 10 9 10 12 5 5 2 7 21 66,915

Table 3: Comparing PIN generation batch size to cluster assignment.

The mean values of the variables T1 through T5 among batches in each cluster are largest
for Cluster 1 and smallest for Cluster 3. This means, on average, batches in Cluster 1 take
the longest to reach milestones in the verification cycle, while batches in Cluster 3 take the
shortest.

The relationship between batch size and cluster assignment suggests that the size of a
PIN generation batch could be used to predict a product’s verification cycle. We explored
this with multiple regression in Section 5.3.

5For this graph, we used multidimensional scaling (MDS) to place these data points in space with mean-
ingful relative positions. An MDS algorithm uses a distance matrix to create coordinates for each item in a
dataset. This allows the Euclidean distance between plotted points to approximate the distances between
the original data points along multiple dimensions. For our data, we used T1 through T5 to generate the
coordinates Dim1 and Dim2. More about MDS can be found in [5].

153



5 Regression Analysis

5.1 Linear Regression

Linear regression is a technique for exploring potential linear relationships between variables.
Using this technique, we can construct equations that can be used to make predictions about
the behavior of PIN shelf lives. We implemented this in two ways: we used simple linear
regression, which uses one variable to make predictions, and we used multiple regression,
which uses many variables to make predictions.

In simple linear regression, we get the following model for predicting y using x:

y = β0 + β1x+ ε.

In this model, β0 is the intercept, β1 is the effect that the predictor x has on y, and ε
is random deviation from the regression line. When constructing this model, we get the
following statistics: R2, which tells us the percent of the variation in y that is explained by
x; and t-values and p-values, which indicate if the coefficients are significantly different from
zero.

In multiple regression, we get models with more terms:

y = β0 +

p∑
i=1

βixi + ε.

In this model, p is the number of predictors, β0 is the intercept, βi is the effect that the
predictor xi has on y, and ε is the random deviation in the model. When using multiple
regression, we look at adjusted R2 (R2

adj) values instead of R2 values, because the R2
adj

values take into account the number of predictors and penalize models which use too many
predictors. This model also gives us t-values and p-values with which we may determine
whether predictors are significant.

We used stepwise regression with forward selection to generate a multiple regression model
in which every predictor is significant. This procedure, which we automated in R, begins
with a dependent variable y and a collection of possible predictors. We select the predictor
that has the strongest linear relationship with y and we create a simple linear regression
between the two variables. Next, we select the predictor out of the remaining variables that
would bring about the greatest increase in our first model’s predictive value. We create a
new multiple regression model using both predictors; then, we check the significance of each
predictor. If both are still significant, we choose a third predictor. This process continues
until there remains no predictor that could significantly improve the model.

5.2 Linear Regression Models to predict actual.90th

5.2.1 Simple Linear Regression Model

There is a strong linear relationship between actual 50th percentile and actual 90th percentile.
The least-squares regression is:

̂actual.90th = 78.9088 + 1.407(actual.50th).
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Note that the units in this model are days; that is, this model predicts the number of
days until 90 percent of a product has been sold using the number of days it took for half
of the product to sell. We note here that a good predictive model for the 90th percentile
could potentially be useful to a manufacturer that wishes to predict appropriate timing for
restocking a product.

The coefficient estimates, standard errors, t-values, and p-values (listed as Pr(>|t|)) are
summarized in in Table 4.

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 78.9088 9.0299 8.74 0.0000
actual.50th 1.4070 0.0444 31.71 0.0000

Table 4: Linear regression to predict actual.90th from actual.50th.

Both the intercept and the actual 50th percentile are significant in the model since their
p-values are approximately zero. This model has an R2 = 78.78%, meaning that 78.78%
of the variation in actual 90th percentile can be explained by the variation in actual 50th

percentile.
With linear regression, we are also able to look at subsets of the data based on parameters

including, but not limited to, industry broad, industry specific, and season of PIN generation.
We used this as another way to look for clusters of similar products. Sproxil was interested
in determining whether pharmaceutical products and non-pharmaceutical products differ
significantly in their shelf lives. We fit separate regression lines to the pharmaceutical data
and the non-pharmaceutical data to investigate this.

Figure 6: This is the relationship be-
tween actual 50th and actual 90th per-
centiles with a regression line.

Figure 7: This is the same rela-
tionship as in Figure 6 with the
data colored by whether the prod-
ucts are pharmaceuticals or non-
pharmaceuticals.

In Figure 6, we see very little difference in the regression lines between the pharmaceu-
ticals and non-pharmaceuticals. This is confirmed by the 95% confidence intervals for both
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the slopes and intercepts of the models for pharmaceutical and non-pharmaceuticals, since
the confidence intervals for the slopes and intercepts overlap.

We should also note that when conducting regression analysis on the shelf life percentiles
we chose to disregard the data from 2014. This decision was made because we noticed that
the data from 2014 exhibited different behavior from the rest of the data. When we observe
the average batch size for products produced in each year in Table 5, we see that there is a
significant drop in 2014.

2010 2011 2012 2013 2014
Mean Batch Size 35356.00 27938.34 24176.74 20856.22 9440.57

Table 5: Mean batch size by year of production.

This led us to believe that many items from the 2014 batches had not been verified by
the time we received data from Sproxil. If this is the case, then the 50th and 90th percentiles
we computed are not the true 50th and 90th percentiles of the complete data set.

5.2.2 Multiple Regression

Having identified 50th shelf life percentile as a strong predictor of 90th shelf life percentile,
we conducted stepwise regression to identify other predictors that could be added to this
model. We initially experimented with incorporating categorical predictors in the form of
indicator variables; however, we chose to restrict our search to numerical predictors in order
to identify variables that had linear relationships with the 90th percentile of shelf life.

We found that the five best predictors for the actual 90th percentile shelf life data are
the actual 50th percentile, the actual 30th percentile, minimum truncated verification date,
batch size, and T1. These variables were all significant at the α = 0.05 significance level.
These variables are used in the following predictive model:

̂actual.90th = 1489.3227 + 1.739(actual.50th)− 0.5116(actual.30th)

−0.1236(T1)− 0.00024(n.obs)− 0.09364(min.trunc.ver.date).

In this model, the min.trunc.ver.date is measured as the number in days since January
1, 1970. The coefficients of this model are summarized in Table 6. The p-values are all less
than 0.05, indicating that the predictors are significant.

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 15843 191.4 8.279 0.00000
actual.50th 1.739 0.1328 13.093 0.00000
actual.30th -0.5116 0.1738 -2.944 0.00353

T1 -0.1236 0.05004 -2.471 0.01412
n.obs -0.00024 0.000 -2.382 0.01792

min.trunc.ver.date -0.09364 0.0119 -7.868 0.00000

Table 6: Multiple regression to predict actual.90th from the five best predictors.
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Figure 8: The purple plusses are the fitted values for actual.90th.
We can see that the multiple regression model gives us more
flexibility than a simple linear model.

This model has an R2 value of 83.25%, meaning that 83.25% of the variation in actual
90th percentile can be explained by the variations in actual 30th and 50th percentiles, batch
size, T1, and the minimum truncated verification date. This indicates that our model is
strongly useful for predicting the actual 90th percentile. The standard error of the residuals
from this model is 62.02 days.

5.3 Linear Regression Models to Predict the Ti’s

We also employed linear regression and multiple regression to establish predictive relation-
ships involving the variables T1 through T5. Recall that these are the times it takes for 1000
through 5000 items to be verified, respectively. These offer another way to measure how
quickly units are verified besides computing percentiles of the shelf life data. The advantage
of using these variables over the percentiles is that the Ti’s are still accurate even if we do not
have the most recent verification data. As long as we have data on the first 5000 verifications,
we can compute these variables to understand how verifications occur over time.

The first model predicts T1 based on the batch size because our cluster analysis results
suggested a relationship between batch size and how quickly verifications occur. The R2

value is 13.61%, which indicates that it is difficult to accurately predict T1 based on batch
size alone. The other four models predict T2, T3, T4, and T5 based on the values of the
previous Ti’s. The simple regression model predicting T2 based on T1 has an R2 value of
93.77%, and the multiple regression models for predicting T3 through T5 all have adjusted
R2 values above 97%, which means that knowledge of certain milestones in the verification
cycle allows us to accurately predict future milestones.

Although batch size is a factor in how quickly verifications occur, it is difficult to predict
what a verification cycle will look like before it begins. However, once the cycle begins,
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data on how quickly verifications initially occur can be used to predict how quickly future
verifications will occur. Like the 90th percentile models, this information appears to be
potentially useful for manufacturers working with Sproxil.

6 Conclusion

In this project, we used multiple techniques to model the shelf-life distribution of PIN
batches. We aimed to identify qualities about a PIN batch that could be used to predict its
shelf-life distribution.

We found that before a batch of a product begins to sell, few predetermined variables
appear to predict the behavior of its shelf-life distribution. In particular, our cluster analysis
and linear regression approaches did not find relationships between product type or season
of PIN generation and shelf life, though further research may indicate that such relationships
do exist. Among variables that are known before the verification cycle begins, batch size
appeared to be a variable that influences shelf life. We also found that variables depicting
a PIN batch’s initial verification cycle pattern could strongly predict the cycle’s overall
duration. For example, 30th and 50th percentiles of shelf life had strong positive correlations
with the 90th percentile. Additionally, the time it takes for specific numbers of PINs to be
verified, as measured by T1 through T5, could be used to predict the time needed for greater
numbers of items to be verified.

The rate at which a batch begins to be verified has a strong relationship with the time
needed for a batch’s verification cycle to resolve. Given these findings, it is feasible to use
data about initial verification patterns for a PIN generation batch in order to predict the
duration of its cycle. Our models may be tested by implementing them to track verification
cycles of currently circulating PIN batches. Since the strongest predictive relationships we
found involved T1 through T5, Sproxil might investigate whether earlier predictors, such as
milestones on the order of hundreds of verifications, have the same predictive power.
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A Appendix: Maximum Likelihood Estimation

We will describe the procedure presented in [2] for finding the values of the parameters α̂ and
β̂ which maximize the likelihood function (introducd in Section 3.2). These can be found
most easily by maximizing the log likelihood function, which is equivalent to maximizing the
likelihood function. The log likelihood function simplifies to

log(L(α, β|x1, . . . , xn)) = n(α− 1)log x− n log Γ(α)− nα log β − n

β
x (1)

where log x denotes the mean of the logarithm of the xi’s and x denotes the mean of the
xi’s.

To maximize the log likelihood function with respect to β, we differentiate (1) with
respect to β and set the derivative equal to zero. There is a critical point β̂ = x/α (where
α is the true parameter value, not the estimator α̂); this is the value of β which maximizes
(1). We substitute this value back into (1) and simplify to get

log(L(α, β|x1, . . . , xn)) = n(α− 1)log x− n log Γ(α)− nα log x+ nα logα− nα. (2)

Now we must maximize (2) with respect to α. We cannot directly solve for the critical
value of α, so we must approximate it. A fast algorithm for iteratively approximating α̂ is
presented in [2]. This makes use of a generalized Newton’s method.

We begin with an initial guess α0 for the value of α̂ that maximizes (2). This guess is
improved by approximating the log likelihood by a function of the form

g(α) = c0 + c1α + c2 log(α)

and finding the value of α which maximizes g(α). This is taken as our new guess for α̂. The
values of the constants c0, c1, and c2 are chosen so that (2) and g(α) have the same function
value and first and second derivative at α0. If αold is our initial guess, then our updated
guess αnew obtained by maximizing g(α) satisfies the following:

1

αnew

=
1

αold

+
log x− log x+ logαold −Ψ(αold)

α2
old(1/αold −Ψ′(αold))

(3)

where Ψ(x) is the digamma function, Ψ(x) = d
dx

log Γ(x), and Ψ′(x) is the trigamma function,
Ψ′(x) = d

dx
Ψ(x) [2].

According to [2], this method converges in about four iterations. We wrote an R-script
to iterate this process until we get successive α-values that are within 0.001 of each other.
For the initial guess α0 we use

α̂ ≈ α0 =
0.5

log x− log x
(4)

which is a good initial approximation obtained from Stirling’s approximation for the gamma
function [2].
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