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Abstract

We create two models based on systems of ordinary differential equations (ODEs) to study how
normal, benign, metastatic, and immune cell populations evolve in a patient with cancer. The first,
one-patch, model is used to simulate the cell populations in a single fixed area. Using stability analysis
for this model, we determine a healthy equilibrium point with no tumor cells and derive necessary and
sufficient conditions for stability. This model is also used to show the effects of immunotherapy on a
cancerous system. To capture the effects of metastatic cancer, a two-patch model is introduced. It looks
at the cell populations in two different areas of the body. A healthy equilibrium is also found for this
model and sufficient conditions for stability are provided.
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1 Introduction

Cancer ravages the body, killing thousands of people a year. There are two types of tumor cells present
in the body: metastatic and benign. Both types are cancerous and replicate faster than the normal cells.
Metastatic cells are more fatal than benign cells because they have the ability to travel and spread throughout
the body. In this paper we develop systems of ODEs that allow us to model the growth of these different
types of cancerous cells in cancer patients.

There are two ways the metastatic cells can travel throughout the body. One way is through the lymphatic
system. The metastatic cells attach to the lymph nodes, the major sites for immune cells [6]. They replicate,
replace the node with a cancerous tumor, and travel to another lymph node to repeat the process. Another
way for the metastatic cells to travel is through the blood vessels.

The immune system has three lines of defense: physical, natural immune response, and adaptive immune
response. Most pathogens are defeated through the first two lines of defense. Tumors are defeated through
the third line of defense. The body recognizes foreign species and sends immune cells, called lymphocytes,

∗This research project is “National Research Experience for Undergraduates Program” funded by NSF grants DMS-1156582
and DMS-1359016.
†Email: john2955@msu.edu
‡Email: peter920@msu.edu
§Email: youngb36@msu.edu
¶Email: ee4126@wayne.edu
‖Department of Mathematics and Statistics, University of Michigan–Dearborn, Email: khyejin@umich.edu
∗∗Email: tsendova@math.msu.edu

384

bmh
Text Box
 Copyright © SIAM Unauthorized reproduction of this article is prohibited



to the site of infection. Once the immune cells destroy the pathogens, they go through a programmed death.
A few lymphocytes remain as memory lymphocytes, so if the pathogen comes back, the body knows how to
fight it off. Immune cells that destroy cancer cells do not have this memory function [4]. Thus, when the
cancer comes back, the body cannot easily defeat it.

The model provided herein is based on models studied in [7] and [3]. As in these studies, we assume that
tumor cells, immune cells, normal cells are in competition with each other for the resources of the body. In
[7] and [3] tumor cells are modeled as a single species, however we distinguish between metastatic and benign
tumor cells, by modeling them as two separate species. We construct two mathematical models based on
systems of ODEs, which model the interactions between the different cell populations. In the first, simpler,
model, we consider the cells in one area, and refer to it as the “one patch model”. We study what conditions
need to be satisfied in order for the patient to be considered healthy. We test parameters for when both types
of tumor cells are present in the body. When the growth rate of the tumor cells exceeds the competition rate
with the normal cells and death rate from the immune cells, the patient is no longer in a healthy equilibrium.
For this unhealthy patient, we provide a preliminary study of the effects of immunotherapy treatments, which
consists of extracting a few immune cells from the patient, increasing their number, and placing them back
in the body.

In the second model, we consider the cells in two different areas and refer to it as the “two patch model”.
We assume that the metastatic and immune cells are migrating between the two patches. The normal and
benign cells do not migrate. For this case, we also consider conditions on the parameters which ensure that
the introduction of a small number of tumor cells will not lead to an unhealthy equilibrium, i.e., the healthy
state is stable under small perturbations.

2 One Patch Model

We assume that the normal, benign, metastatic and immune cell populations are only interacting in one
area of the body. Any influences outside of this area are ignored. Let N(t), B(t), M(t), and I(t) denote
respectively the normal, benign, metastatic, and immune cell populations at time t. The following system of
differential equations models the interactions between the four types of cells in this fixed area. The model
below is an extension of the tumor model studied by dePillis and Rudinskaya in [3]. In this paper, however,
we separate the tumor cell population into two kinds - benign and metastatic, while in [3] all tumor cells are
modeled as a single species.

dN

dt
= aN(1 − bN) − cBN − dMN, (1)

dB

dt
= eB

(
1 − B

K1
− fM

K1

)
− gBN

K1
− hBI, (2)

dM

dt
= jM

(
1 − M

K2
− lB

K2

)
− mMN

K2
− nMI, (3)

dI

dt
= o+

pIB

q +B
+

rIM

s+M
− uIB − vIM − wI. (4)

Here a denotes the growth rate of normal cells and b is the death rate of normal cells, while c and d represent
the competition rates of the normal cells with the benign and metastatic cells respectively. In Eq. (2) e is
the growth rate of the benign cells and K1 is the carrying capacity of the tissue where the benign tumor
is located. Furthermore, f and g denote the competition rates between the benign cells and the metastatic
and normal cells respectively, and h is the death rate of the benign cells due to the actions of the immune
cells. In Eq. (3) j is the growth rate of the metastatic cells, K2 is the tissue’s carrying capacity of the
metastatic cells, l and m denote the competition between the metastatic cells and the benign and normal
cells respectively, and n denotes the death rate of the metastatic cells due to the immune cells. Lastly, in Eq.
(4), o is the constant supply of immune cells from the body, p and r are the growth rates of the immune cells,
due to the benign and metastatic tumor cells respectively. The non-linear growth terms in the immune-cells
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equation are taken to be of Michaelis-Menten type, and q and s are positive constants corresponding to the
half-maximum of the rate they are used to define. In addition, u and v represent the death rates of immune
cells due to fighting off the tumor cells, and w represents the immune cells dying from programmed cell
death.

2.1 Nondimensionalization

For the sake of simplifying the analysis, we nondimensionalize our equations to remove artificial effects due
to choice of units for measurements. This yields the following change of variables:

t = t∗

a , B = B∗K1, N = N∗

b , M = M∗K2, I = oI∗

w ,

where the starred quantities are nondimensional. Then, it is convenient to set

ĉ = cK1

a , d̂ = dK2

a , ĵ = j
a , m̂ = m

K2ba
, l̂ = lK1

K2
, n̂ = no

wa , ê = e
a , ĝ = g

abK1
, f̂ = fK2

K1
,

ĥ = ho
aw , ŵ = w

a , p̂ = p
a , q̂ = q

K1
, r̂ = r

a , ŝ = s
K2
, û = uK1

a , v̂ = vK2

a .

From this we arrive at the nondimensionalized equations:

dN∗

dt
= N∗ − (N∗)2 − d̂M∗N∗ − ĉB∗N∗, (5)

dB∗

dt
= êB∗(1 −B∗ − f̂M∗) − ĝB∗N∗ − ĥB∗I∗, (6)

dM∗

dt
= ĵM∗(1 −M∗ − l̂B∗) − m̂M∗N∗ − n̂M∗I∗, (7)

dI∗

dt
= ŵ(1 − I∗) +

p̂I∗B∗

q̂ +B∗
+
r̂I∗M∗

ŝ+M∗
− ûI∗B∗ − v̂I∗M∗. (8)

Using the nondimensionalized system we proceed to determine equilibrium points. The healthy equilib-
rium point can be found when a healthy individual has a body containing no benign or metastatic tumor
cells, that is, M∗ = 0 and B∗ = 0. By substituting these values back into the nondimensionalized equations
and setting dN∗/dt = 0 and dI∗/dt = 0, we obtain N∗ = I∗ = 1. Thus the healthy equilibrium point is
(N∗, B∗,M∗, I∗) = (1, 0, 0, 1).

2.2 Analysis

2.2.1 Determining Stability of Healthy Equilibrium Point (1,0,0,1)

To determine the stability of the healthy equilibrium point for the system, we analyze the eigenvalues
associated with this point. If any eigenvalue is positive, the equilibrium point is unstable, and if all of
them are negative, the equilibrium point is asymptotically stable, i.e., the system will approach the healthy
equilibrium after a small perturbation off of the equilibrium state.

The linearized system around N∗ = 1, B∗ = 0, M∗ = 0, and I∗ = 1

dN̂

dt
= −N̂ − ĉB̂ − d̂M̂ , (9)

dB̂

dt
= e∗B̂, (10)

dM̂

dt
= j∗M̂, (11)

dÎ

dt
= p∗B̂ + r∗M̂ − ŵÎ, (12)
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where e∗ = ê− ĝ − ĥ, j∗ = ĵ − m̂− n̂, p∗ =
p̂

q̂
− û, and r∗ =

r̂

ŝ
− v̂.

To find the eigenvalues associated with these equations, we solve det(A − λI) = 0 for λ, where A is the
matrix associated with equations (9)∼(12) and I is the corresponding identity matrix:

det


−1 − λ −ĉ −d̂ 0

0 e∗ − λ 0 0
0 0 j∗ − λ 0
0 p∗ r∗ −ŵ − λ

 = 0.

As a result, we arrive at the following four eigenvalues λ1 = −1, λ2 = e∗, λ3 = j∗, and λ4 = −ŵ. Recall
that in order for a point to be considered a stable equilibrium point, all of the eigenvalues must be negative.
Since ŵ is the death rate of the immune cells, it is assumed to be positive. Hence, −ŵ is always negative.
The values e∗ and j∗ can be positive or negative. Since, e∗ = ê − (ĝ + ĥ), in order for e∗ to be negative,

we need ê < ĝ + ĥ. This means that the growth rate of the benign cells must be less than the sum of the
rate of competition between the benign and normal cells and the death rate of the benign cells from the
immune cells. In other words, the growth rate of the benign cells must be less than their total death rate.
Similarly, since j∗ = ĵ − (m̂+ n̂), the eigenvalue j∗ is negative when ĵ < m̂+ n̂. This implies that stability
of the equilibrium point requires the growth rate of the metastatic cells be less than the rate of competition
between the metastatic and normal cells and the death rate of the metastatic cells from the immune cells.

To summarize, the healthy equilibrium point (1, 0, 0, 1) is asymptotically stable if and only if

ê < ĝ + ĥ and ĵ < m̂+ n̂. (13)

2.2.2 Numerical Experiments

Numerical experiments are run to test the stability of the equilibrium point under the parameters that were
found to yield stable or unstable conditions. Figure 1a corresponds to the initial conditions N∗(0) = 1,
M∗(0) = 0.1, B∗(0) = 0.1, I∗(0) = 1 and a parameter set satisfying the conditions that ĵ < m̂ + n̂, and

ê < ĝ + ĥ. Recall, that these conditions yield a stable equilibrium where the normal and immune cell
populations converge to 1 and benign and metastatic cell populations converge to zero.

Figure 1b corresponds to the same parameters as Figure 1a except the value of ĵ has been increased to
surpass m̂+ n̂. (Note that ĵ is related to the growth rate of the meastatic cells.) This shows the instability of
the equilibrium point when the necessary conditions are not met. The normal and immune cell populations
no longer converge to 1, and the metastatic cell population has increased as shown.

2.3 Effects of Immunotherapy for the One Patch Model

According to [1], immunotherapy is a form of cancer treatment that uses a person’s immune system to
combat cancer. Immunotherapy can be implemented in a couple of different ways. Some examples include
inserting man-made proteins into a patient’s immune system to increase performance or simply injecting
more immune cells into the body. In the following discussion, the one patch model is used to analyze the
outcomes of adding more immune cells to a cancerous system. Figures 2a and 2b represent a person with a
stable immune system (i.e. the healthy equilibrium is a stable point). Figures 3a and 3b represent a person
with an unstable immune system (i.e. the healthy equilibrium is an unstable point).

Figure 2a represents a cancerous system where the metastatic cells level off at a significant number,
indicating an unhealthy state. The normal cell population is decreasing because of their competition with the
metastatic cells. The immune cell population is decreasing because they are dying from fighting the growing
population of metastatic cells. The benign cells die out because of the competition with the metastatic cells.

Figure 2b considers the case when immunotherapy is added to a cancerous system. In order to try to
drive the system to a healthy state we interrupt system 2a at time t = 1 and start it with initial conditions
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(a) (Stable Equilibrium) ĵ = 2 < 5 = m̂ + n̂. (b) (Unstable Equilibrium) ĵ = 7 > 5 = m̂ + n̂.

Figure 1: Common parameters for (a) and (b): ĉ = 3, d̂ = 1, ê = 1, f̂ = 3, ĝ = 3, ĥ = 2.5, l̂ = 1, m̂ = 2, n̂ =
3, ŵ = 3, p̂ = 2, q̂ = 1, ŝ = 1, r̂ = 3, û = 3, v̂ = 4.

such that the natural, metastatic and benign cells have the same values as at time t = 1 in system 2a, but
the number of immune cells is much larger (in this case I(1)=2). The addition of more immune cells will
cause the population of the metastatic cells to decrease and cause the normal cell population to grow. In
this figure the initial value of immune cells is increased so that they can fight the metastatic cells in a more
aggressive manner. We can see that as time progresses, the metastatic cell population does not return; thus,
this patient is cancer free. We also observe that the normal and immune cell populations reach a healthy
equilibrium.

(a) (Stable System without Immunotherapy) Initial
conditions are N(0) = 1, I(0) = 1, M(0) = 0.5, and
B(0) = 0.5.

(b) (Stable System with Immunotherapy) Initial con-
ditions are N(1) = 0.79, I(1) = 2, M(1) = 0.23, and
B(1) = 0.003.

Figure 2: Common parameters for (a) and (b): ĉ = 3, d̂ = 1, ê = 2, f̂ = 3, ĝ = 3, l̂ = 1, p̂ = 2, r̂ = 1.27, q̂ =

1, ŝ = 1, n̂ = 3, v̂ = 4, ĥ = 2.5, ĵ = 4.5, m̂ = 2, n̂ = 3, ŵ = 1, û = 3.

Similarly to Figure 2a, Figure 3a represents a cancerous system where the metastatic cell population
surpasses the populations of normal and immune cells. However, in this case, the parameters do not satisfy
conditions (13), i.e., the healthy equilibrium is unstable.

Figure 3b represents immunotherapy where more immune cells are added to our initial immune cell
population. Initially, the metastatic cell population looks like it is approaching zero and the population of
normal cells decreases then levels off. Eventually, however, the metastatic cell population returns. Even

388



(a) (Unstable System without Immunotherapy) Ini-
tial conditions are N(0) = 1, I(0) = 1, M(0) = 0.5,
and B(0) = 0.2.

(b) (Unstable System with Immunotherapy) Initial
conditions are N(1) = 0.7, I(1) = 10, M(1) = 0.52,
and B(1) = 0.002.

Figure 3: Common parameters for (a) and (b): ĉ = 3, d̂ = 1, ê = 2, f̂ = 3, ĝ = 3, l̂ = 1, p̂ = 2, r̂ = 1, q̂ =

1, ŝ = 1, n̂ = 3, v̂ = 4, ĥ = 2.5, ĵ = 6.7, m̂ = 2, ŵ = 1, ŵ = 3.

with the help of immunotherapy, eventually the normal cells will die out, implying that the person has died.
According to [2], for 2 women out of 9 with cervical cancer, the cancer went away and for the remaining

7 it either came back or never went away. While exploring how effective immunotherapy would be with our
models, we can conclude that it depends on the person’s immune system and whether the healthy equilibrium
is stable or unstable (i.e., whether conditions (13) are satisfied or not). We believe that this could help explain
why immunotherapy works for some individuals and not for others. Hopefully immunotherapy in addition
to other methods of fighting cancer, such as chemotherapy, could possibly help an unstable immune system
eradicate cancer. This is something we intend to study further in the future.

3 Two Patch Model

For our two patch model, we assume that metastatic cells and immune cells are mobile. To account for
this we have added migration terms µi and γi, where i = 1, 2 represent the two patches. Without loss of
generality, we assume that µi and γi are positive constants. For example, in the equation for the rate of
change of M1, the term −µ1M1 represents migration rate out of patch 1, and +µ2M2 represents rate of
migration from patch 2 into patch 1. There is one equation for each type of cell and each patch contains all
four cell types; so, there are eight equations altogether. The following is the ODE system for two patches:

dN1

dt
= a1N1 − b1a1N

2
1 − c1B1N1 − d1M1N1,

dN2

dt
= a2N2 − b2a2N

2
2 − c2B2N2 − d2M2N2,

dB1

dt
= e1B1(1 − B1

K1
− f1M1

K1
) − g1B1N1

K1
− h1B1I1,

dB2

dt
= e2B2(1 − B2

K2
− f2M2

K2
) − g2B2N2

K2
− h2B2I2,

dM1

dt
= j1M1(1 − M1

K3
− l1B1

K3
) − m1M1N1

K3
− n1M1I1 − µ1M1 + µ2M2,

dM2

dt
= j2M2(1 − M2

K4
− l2B2

K4
) − m2M2N2

K4
− n2M2I2 − µ2M2 + µ1M1,
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dI1
dt

= o+
p1I1B1

q1 +B1
+
r1I1M1

s1 +M1
− u1I1B1 − v1I1M1 − w1I1 − γ1I1 + γ2I2,

dI2
dt

= o+
p2I2B2

q2 +B2
+
r2I2M2

s2 +M2
− u2I2B2 − v2I2M2 − w2I2 − γ2I2 + γ1I1, .

The equations in the two patch model are very similar to those used in the one patch model. New additions
to the two patch model include the subscripts 1 and 2 to denote which patch each variable is referring to
and migration rates represented by terms at the end of the metastatic and immune cell equations to account
for the cells’ ability to move between the two patches.

3.1 Nondimensionalization

Similarly to the one patch model, we nondimensionalized the equations for the two patch model. This
resulted in the following change of variables

N1 =
N∗1
b1
, B1 = B∗1K1, M1 = M∗1K3, I1 =

I∗1o

w1
, N2 =

N∗2
b2
,

B2 = B∗2K2, M2 = M∗2K4, I2 =
I∗2o

w2
, t =

t∗

a1
,

where the starred quantities are nondimensional. For convenience, we set

ĉ1 =
c1K1

a1
, d̂1 =

d1K3

a1
, â2 =

a2

a1
, ĉ2 =

c2K2

a1
, d̂2 =

d2K4

a1
, ê1 =

e1

a1
,

f̂1 =
f1K3

K1
, ĝ1 =

g1

a1b1K1
, ĥ1 =

h1o

w1a1
, ê2 =

e2

a1
, f̂2 =

f2K4

K2
, ĝ2 =

g2

b2K2a1
,

ĥ2 =
h2o

w2a1
, ĵ1 =

j1
a1
, l̂1 =

l1K1

K3
, m̂1 =

m1

a1b1K3
, n̂1 =

n1o

w1a1
, µ̂1 =

µ1

a1
,

µ̂2 =
µ2

a1
, α̂ =

K4

K3
, ĵ2 =

j2
a1
, l̂2 =

l2K2

K4
, m̂2 =

m2

a1K4b2
, n̂2 =

n2o

w2a1
,

ŵ1 =
w1

a1
, p̂1 =

p1

a1
, q̂1 =

q1

K1
, r̂1 =

r1

a1
, ŝ1 =

s1

K3
, û1 =

u1K1

a1
,

v̂1 =
v1K3

a1
, γ̂1 =

γ1

a1
, γ̂2 =

γ2

a1
, β̂ =

w1

w2
, ŵ2 =

w2

a1
, p̂2 =

p2

a1
,

q̂2 =
q2

K2
, r̂2 =

r2

a1
, ŝ2 =

s2

K4
, û2 =

u2K2

a1
, v̂2 =

v2K4

a1
.

Thus, the ODE system of nondimensionalized equations takes the following form:

dN∗1
dt∗

= N∗1 − (N∗1 )2 − ĉ1B
∗
1N
∗
1 − d̂1M

∗
1N
∗
1 , (14)

dN∗2
dt∗

= â2N
∗
2 − â2(N∗2 )2 − ĉ2B

∗
2N
∗
2 − d̂2M

∗
2N
∗
2 , (15)

dB∗1
dt∗

= ê1B
∗
1(1 −B∗1 − f̂1M

∗
1 ) − ĝ1B

∗
1N
∗
1 − ĥ1B

∗
1I
∗
1 , (16)

dB∗2
dt∗

= ê2B
∗
2(1 −B∗2 − f̂2M

∗
2 ) − ĝ2B

∗
2N
∗
2 − ĥ2B

∗
2I
∗
2 , (17)

dM∗1
dt∗

= ĵ1M
∗
1 (1 −M∗1 − l̂1B

∗
1) − m̂1M

∗
1N
∗
1 − n̂1M

∗
1 I
∗
1 − µ̂1M

∗
1 + µ̂2α̂M

∗
2 , (18)

dM∗2
dt∗

= ĵ2M
∗
2 (1 −M∗2 − l̂2B

∗
2) − m̂2M

∗
2N
∗
2 − n̂2M

∗
2 I
∗
2 − µ̂2M

∗
2 +

µ̂1

α̂
M∗1 , (19)

dI∗1
dt∗

= ŵ1 +
p̂1I
∗
1B
∗
1

q̂1 +B∗1
+
r̂1I
∗
1M

∗
1

ŝ1 +M∗1
− û1I

∗
1B
∗
1 − v̂1I

∗
1M

∗
1 − ŵ1I

∗
1 − γ̂1I

∗
1 + γ̂2β̂I

∗
2 , (20)

dI∗2
dt∗

= ŵ2 +
p̂2I
∗
2B
∗
2

q̂2 +B∗2
+
r̂2I
∗
2M

∗
2

ŝ2 +M∗2
− û2I

∗
2B
∗
2 − v̂2I

∗
2M

∗
2 − ŵ2I

∗
2 − γ̂2I

∗
2 +

γ̂1

β̂
I∗1 . (21)
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The above system of equations is used to find a healthy equilibrium point for the two patch model. A healthy
equilibrium is again defined as having some normal and immune cells in each patch and no tumor cells. So,
B∗1 , B

∗
2 ,M

∗
1 , and M∗2 all equal zero. This makes equations (16), (17), (18), and (19) trivially satisfied. The

remaining equations are set equal to zero and we solve for N∗1 , N
∗
2 , I
∗
1 , and I∗2 . Equations (14) and (15) are

simple and result in N∗1 = 1 and N∗2 = 1. Equations (20) and (21) are more complicated and simplify in the
following manner

I∗1 =
ŵ1 + γ̂2β̂I

∗
2

ŵ1 + γ̂1
, I∗2 =

ŵ2 + γ̂1
β̂
I∗1

ŵ2 + γ̂2
.

After substitution we obtained

I∗1 =
ŵ1ŵ2 + ŵ1γ̂2 + γ̂2β̂ŵ2

ŵ1ŵ2 + ŵ2γ̂1 + ŵ1γ̂2
, I∗2 =

ŵ1ŵ2β̂ + ŵ2γ̂1β̂ + ŵ1γ̂1

β̂(ŵ1ŵ2 + ŵ1γ̂2 + ŵ2γ̂1)
.

From now we will denote these values I∗1 and I∗2 by w∗1 and w∗2 respectively. Thus, the healthy equilibrium
point for the two patch model is (N∗1N

∗
2 , B

∗
1 , B

∗
2 ,M

∗
1 ,M

∗
2 , I
∗
1 , I
∗
2 ) = (1, 1, 0, 0, 0, 0, w∗1 , w

∗
2).

3.2 Determining Stability of Healthy Equilibrium Point (1, 1, 0, 0, 0, 0, w∗1, w
∗
2)

We use methods very similar to those used in our analysis of the healthy equilibrium point for the one patch
model to determine the stability of this equilibrium point. After linearizing the system of equations (14-21)
about the point (N∗1N

∗
2 , B

∗
1 , B

∗
2 ,M

∗
1 ,M

∗
2 , I
∗
1 , I
∗
2 ) = (1, 1, 0, 0, 0, 0, w∗1 , w

∗
2), we arrive at

N̂1
′

= −N̂1 − ĉ1B̂ − d̂1M̂1,

N̂2
′

= −â2N̂2 − ĉ2B̂2 − d̂2M̂2,

B̂1
′

= e∗1B̂1,

B̂2
′

= e∗2B̂2,

M̂1
′

= j∗1M̂1 + µ̂∗2M̂2,

M̂2
′

= µ∗1M̂1 + j∗2M̂2,

Î1
′

= p∗1B̂1 + r∗1M̂1 − γ∗1 Î1 + γ∗2 Î2,

Î2
′

= p∗2B̂2 + r∗2M̂2 + φ∗1Î1 − φ∗2Î2,

where e∗1 = ê1− ĝ1−ĥ1w
∗
1 , e∗2 = ê2− ĝ2−ĥ2w

∗
2 , j∗1 = ĵ1−m̂1−n̂1w

∗
1−µ̂1, µ∗2 = µ̂2α̂, j∗2 = ĵ2−m̂2−n̂2w

∗
2−µ̂2,

µ∗1 =
µ̂1

α̂
, p∗1 =

p̂1w
∗
1

q̂1
−û1w

∗
1 , r∗1 =

r̂1w
∗
1

ŝ1
−v̂1w

∗
1 , γ∗1 = ŵ1+γ̂1, γ∗2 = γ̂2β̂, p∗2 =

p̂2w
∗
2

q̂2
−û2w

∗
2 , r∗2 =

r̂2w
∗
2

ŝ2
−v̂2w

∗
2 ,

φ∗1 = γ̂1
β̂

, and φ∗2 = ŵ2 + γ̂2.

One can easily show that the eigenvalues associated with the above system of equations are given by

λ1 = −1, λ2 = −â2, λ3 = e∗1, λ4 = e∗2,

λ5 =
1

2

(
−γ∗1 − φ∗2 −

√
(γ∗1)2 − 2γ∗1φ

∗
2 + (φ∗2)2 + 4γ∗2φ

∗
1

)
,

λ6 =
1

2

(
−γ∗1 − φ∗2 +

√
(γ∗1)2 − 2γ∗1φ

∗
2 + (φ∗2)2 + 4γ∗2φ

∗
1

)
,

λ7 =
1

2

(
j∗1 + j∗2 −

√
(j∗1 )2 − 2j∗1j

∗
2 + (j∗2 )2 + 4µ∗1µ

∗
2

)
,

λ8 =
1

2

(
j∗1 + j∗2 +

√
(j∗1 )2 − 2j∗1j

∗
2 + (j∗2 )2 + 4µ∗1µ

∗
2

)
.

As discussed above, the healthy equilibrium point is asymptotically stable if and only if λi < 0 for all
i = 1, . . . 8. Similarly to the one patch model, the stability of the healthy equilibrium point depends on the

391



birth rate of the benign and metastatic cells and the rate at which they compete with normal cells and are
killed by immune cells.

In particular, note that to ensure that λ5 < 0 and λ6 < 0 is equivalent to λ5 +λ6 < 0 and λ5λ6 > 0. After
some algebraic manipulations one can check that this is satisfied for all physical values of the parameters (as
we are assuming that γ̂i and ŵi are non-negative).

On the other hand, having λ7 < 0 and λ8 < 0 is equivalent to j∗1 + j∗2 < 0 and µ̂1µ̂2 < j∗1j
∗
2 . Keeping

everything else fixed, these conditions, together with λ3 < 0 and λ4 < 0, can be satisfied by making ω∗1 and
ω∗2 sufficiently large. In other words, if the number of immune cells in each patch is sufficiently large, the
healthy equilibrium is stable. This analysis lends support for the effectiveness of immunotherapy.

4 Discussion

We based our analysis on mathematical models of cancer introduced in [3], where three types of cells were
considered: normal, tumor, and immune cells. In our model, however, the tumor cell population is split
into two different types of cells - metastatic and benign, thus arriving to what we refer to as the “one patch
model”. Necessary and sufficient conditions for the stability of the healthy equilibrium point were derived
analytically and studied numerically. Further, the effects of immunotherapy were studied, both in the case
of a stable healthy equilibrium and in the case of an unstable one. In the former case, a person’s tumor cell
population can be eradicated using immunotherapy, while in the latter case, after an initial decline in the
tumor population, the metastatic tumor cells can come back. Furthermore, in order to capture the effects of
cell migration, the two patch model was created and necessary and sufficient conditions for stability of the
healthy equilibrium point were derived.

For future investigations, a more in depth biological background could help with a more accurate choice
of the parameters for the numerical experiments. An understanding of how cancer moves in the body can
assist in finding ways to control aspects, such as metastatic cell mobility and the rapid growth rates of the
benign and metastatic cell populations, which make cancer such a lethal disease.
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