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Abstract. In this paper we study an heuristic approach, based on parallelism, to estimate the
Diameter-Constrained Reliability (DCR) of a given undirected probabilistic graph G = (V, E), with
two terminal nodes s and t, a given diameter bound D, and where edges are assigned independent
probabilities of failure (node are assumed to be perfect). Since exact methods to evaluate the DCR

are computationally expensive (i.e., NP-hard), we propose to implement a Monte Carlo (MC) method
based upon MPI parallel processing to estimate the reliability. We conduct computational tests on
several topologies while considering different factors such as number of cluster nodes utilized, number
of trials performed by the cluster nodes, different ranges generated by random number functions,
and then we determine how these factors affect the estimation of the DCR.

Key words. Network Reliability, Diameter-Constraint, Factoring Theorem, Monte Carlo, Par-
allelism.

1. Introduction. The system under study is a communication network repre-
sented by a undirected graph G = (V,E), where V and E, are the set of vertices and
edges of G, respectively. We are also assuming that edges fail independently with
known probabilities (vertices are always reliable). If we are interested in determining
the probability that messages are successfully transmitted between a set of terminal
nodes K ⊆ V , the classical reliability, RK(G), measures the probability that after
deletion of the failed edges, there exists a path connecting each pair x, y ∈ K, of
terminal vertices.

However, in many real-life situations, the quality of the communication depends
on the existence of a path connecting each pair of terminals x and y, whose length
(measured as the number of edges) is bounded by a given integer D. The K-terminal

Diameter Constrained Network Reliability (DCR), denoted as RK(G,D), introduced
by Petingi and Rodriguez in 2001 [9], is the probability that there exists a path of
length D or less between each pair of terminal vertices x and y. The DCR can be
applied to assess performance objectives, for example, of packet-oriented networks
where links may fail and there is a ”time-to-live” (TTL) limit, specified in number of
hops that can be traversed by any given packet (for instance IPv6 packets include a
hop limit field [6]). It is also the case of many overlay networks (such as peer-to-peer
file sharing networks) that employ flooding protocols for peer discovery which specify
a maximum number of hops to be visited by a request.

The DCR measure subsumes the classical reliability in the following sense; as the
maximum path length in a network on n vertices is composed of at most n− 1 edges,
then RK(G,D) = RK(G), whenever D = n−1. As calculation the classical reliability
for arbitrary terminal set K is an NP-hard problem [10], then determination of the
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DCR is an NP-hard problem as well. For a fixed number of terminal verticesK, and for
fixed diameter bound D, Cancela and Petingi [3] proved that to determine RK(G,D)
is also NP-hard; thus in order to efficiently estimate the reliability, in this paper we
propose an heuristic to evaluate the DCR, based on Monte Carlo (MC) using MPI
parallel processing [12], which is run on a distributed-memory architecture system.
Even though MC has been applied successfully to evaluate the classical reliability [7],
as well as the DCR [2], to our knowledge it was never implemented using parallelism.

In this paper we specifically concentrate on the case when K = {s, t}, also called
the two-terminal DCR or the source-to-terminal DCR [8], since many applications
today require to measure the reliability of transmitting messages between two partic-
ipating nodes (e.g., peer-to-peer networks). We evaluate the precision of our method-
ology by performing several tests on graphs whose exact DCR reliability measures are
known [8]. We’ve also run some tests on graphs in order to measure how different
factors such as the number of cluster nodes utilized, number of trials executed by
these nodes, and different ranges generated by a random-number function, affects the
accuracy of the reliability estimation.

This paper is structured as follows. In Section 2 we will give a background for
an exact method (Factoring Theorem) of evaluation and MC techniques to estimate
the DCR [4, 8]. In Section 3 we present the pseudo-code of our implementation using
MPI parallel processing. Then in Section 4, we will evaluate the results of our tests
and in Section 5 we present our conclusions.

2. Background. We use the notation re to represent the probability that an
edge e is operational, while qe = 1− re is the edge probability of failure.

2.1. Exact Method of Evaluation. The exact DCR may be calculated using
the Factoring Theorem, which is also known as Moskowitz’s Decomposition Theorem
[8]. We define an edge e undetermined if 0 < re < 1. Factoring Theorem generates a
binary tree where each node j represents a subgraph of G, Gj (originally G0 = G),
and whose children correspond to the two subgraphs of Gj that will have the selected
edge e to be operational (re = 1) or failed (re = 0). When considering the source-
to-terminal DCR of graph G, the reliability of each subgraph Gj is calculated as
[8]:

R{s,t}(Gj , D) =































































































0 : if there exist no path between s and t, whose length is less
than or equal to D.

1 : if Gj contains an operational path between s and t, whose
length is less than or equal to D.

reR{s,t}(Gj ∗ e,D) + (1− re)R{s,t}(Gj − e,D) :
if there is an undetermined edge e that would
allow for the existence of at least one path between s and t,
whose length is less than or equal to D.

⊲ Gj ∗ e is the subgraph of G obtained from fixing
re = 1 (operational).

⊲ Gj − e is the subgraph of G obtained from fixing
re = 0 (failed).

The leaves of the generated binary tree correspond to the subgraphs of G whose
reliabilities are either 0 or 1 as stated in the previous bracketed equation. This
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evaluation will yield a binary tree with at most 2|E| nodes, where E is the edge-set,
thus this method is of exponential complexity in the worst-case. In the next section
we propose the implementation of a MC technique using parallelism.

2.2. Monte Carlo techniques to evaluate the DCR. Monte Carlo tech-
niques are methods that perform repeated random sampling in order to obtain an
approximate solution to a problem, and, they have been successfully applied to es-
timate both the classical reliability as well as the DCR. To estimate the DCR, two
MC methods have been proposed [2]. One is the Crude Monte Carlo (CMC) method
and the other is the Recursive Variance Reduction (RVR) method. The CMC is
the method we applied for our tests, and simply consist in generating n independent
copies of G (i.e. G1, ... , Gn), which are subgraphs of the original graph G where all
the edges are randomly fixed as operational or failed, based on the edge reliability.
Therefore, the estimated source-to-terminal DCR would be:

∑n

j=1
R{s,t}(G

j , D)/n.
Due to the law of large numbers, this approximation converges to the exact DCR,
R{s,t}(G,D) as n → ∞. The second MC method is the RVR which associates every
output random variable with a variance, and limits the results in order to obtain a
greater precision. Therefore RVR will give a more accurate DCR estimation than the
CMC method when using the same number of random samples [4]. However as we
will show in the next sections, the CMC approach will yield excellent results when
parallelism is applied.

3. Proposed methodology to evaluate the DCR: Monte Carlo using
MPI parallel processing. In this work we discuss the Crude Monte Carlo method
and implement it on a distributed-memory architecture system utilizing MPI (Message
Passing Interface) [12].

The original implementation code in C++ using MPI libraries can be found in [5].

The following is our MC method using MPI parallel processing:

1. Input: Probabilistic graph G = (V,E), two terminal nodes s and t, reliability
r(e) for each edge e ∈ E, and a diameter bound D.

2. Each processor generates an assigned number-of-trials, each trial correspond-
ing to a subgraph Gj of G (see previous section).
2.1 For each trial, determine if each edge of G either succeeded (include in

the subgraph Gj) or failed (excluded from Gj).
2.1.1 Determine the edge succeeded or failed by generating a random

number 0 < rand(e) < 1. A random number randint is generated
within the range [1, Max] and rand(e) = randint/Max. If rand(e)
is less than or equal the reliability of the edge (re), then the edge
succeeded, otherwise the edge failed.

2.2 After all the edges are determined, use Dijkstra’s algorithm [8] to de-
termine whether there is a path with a distance less than or equal to
the diameter bound D between s and t in Gj . If yes, then increment
success-count.

3. Once each processor has finished, pass its success-count and number-of-trials

to the master processor p0.
4. The master processor p0 will sum-up success-count gathered from the slave

processors into a variable Total-Successes and number-of-trials into a variable
Total-Trials and will display the approximated DCR, which is estimated as
Total-Successes / Total-Trials.
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Fig. 4.1. Types of topologies: a) 5X5-Grid, b) Arpanet, and c) Dodecahedron.

Table 4.1

Comparison of the Factoring method (exact reliability) and parallelized Monte Carlo method
(approximate reliability) on the 5x5-Grid, Arpanet, and Dodecahedron graphs.

G (s, t) D Factoring Monte Carlo % Difference in
Rs,t(G,D) CPU-t (s) Rs,t(G,D) CPU-t (s) Reliability

5X5Grid (0,6) 8 0.498971 883 0.499057 3.96 .017
5X5Grid (0,12) 8 0.339515 2706 0.339696 3.97 .053
5X5Grid (0,18) 8 0.234521 > 24 hours 0.234588 4.12 .029
5X5Grid (0,20) 8 0.176359 > 24 hours 0.176372 3.99 .008
5X5Grid (0,24) 8 0.123324 > 24 hours 0.123232 3.97 .074
Dodeca (0,19) 5 0.168441 95 0.168394 3.20 .028
Dodeca 7 0.268820 170 0.268790 2.99 .011
Dodeca 9 0.285391 201 0.285597 3.18 .072
Arpanet (0,19) 4 0.162109 19 0.162146 3.00 .023
Arpanet 6 0.237618 103 0.237368 3.00 .105
Arpanet 9 0.295711 373 0.295696 3.08 .005
Arpanet 19 0.302415 475 0.302339 3.00 .025

The longest execution time taken by a processor will yield the execution time (in
seconds) of the algorithm.

4. Evaluation of the accuracy of the proposed implementation. In this
section we perform several algorithmic tests on graphs to evaluate the accuracy of
the proposed parallel processing implementation of MC when the number of proces-
sors, number of trials, and random number ranges are incremented. These tests were
performed on the 5x5-Grid, Arpanet, and Dodecahedron topologies (see Fig. 4.1).
Algorithms were implemented in C++, and ran on the cluster Penzias of the City
University of New York High Performance Computing Center (CUNY-HPCC). Pen-
zias is a cluster with a total of 1,152 Intel Sandy Bridge cores. Each Sandy Bridge
core is separated into 2 virtual nodes: one with 12 cores and no GPUs and one with
4 cores and 2 GPUs [1]. To perform our tests, we used up to 50 non-GPUs virtual
nodes.
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Fig. 4.2. Graph of the Monte Carlo reliability and of the exact reliability obtained from using
different number of processors.

Table 4.2

Results from the Monte Carlo method using MPI parallelism on a 5X5-Grid using different
number of processors with the total number of trials fixed to a billion.

Processors Rs,t(G,D) CPU-t (s) % Difference in Reliability
1 0.123218 4094.94 .086

10 0.123239 394.38 .069
30 0.123237 131.33 .070
50 0.123239 78.39 .069

4.1. Verify the proposed parallelized Monte Carlo method. To first ver-
ify that the proposed parallelized Monte Carlo method will provide an accurate esti-
mation of the exact reliability, we performed our tests on a 5x5-Grid, Arpanet, and
Dodecahedron undirected graphs. For all the graphs, each edge e ∈ E was assigned
the probability of failure qe = 0.5. We ran our tests using ten processors and a mil-
lion trials per processor, given a total of ten million trials per graph. Table 4.1 shows
the results obtained from the MC method compared to the exact evaluation method
using Factoring method [8]. Column 1 shows the type of graph we are testing, the
labels of the terminal nodes (s, t), and the diameter bound D. Columns 2 and 3 show
the reliability and CPU-time from using the exact Factoring method [8]. Columns
4 and 5 show the reliability and CPU-time of the MC method. The percentage dif-
ference between the exact evaluation and the estimated one is shown in column 6.
It’s important to note since the Factoring method and MC method were executed on
different computers, the execution time between the two methods can’t be compared.
However, we can compare the execution time relative to themselves. We note that
the time grows exponentially using the Factoring method while the execution time
for the MC method barely changes.

As expected, the differences between the reliability obtained using MC and the
exact reliability are insignificant. Thus, this verifies that our MC implementation
gives a good approximation to the actual reliability.

4.2. Investigate the effects of increasing the number processors while
the total number of trials remains constant. To investigate whether the number
of processors alone will impact the accuracy of the network reliability obtained using

139



MARTIN LAPINSKI, HELEN LIN, MYLES MCHUGH

0 10 20 30 40 50
0.12320

0.12325

0.12330

0.12335

0.12340

109 Number of Trials

R
el
ia
b
il
it
y

Different Number of Trials

Exact Reliability
Monte Carlo Reliability

Fig. 4.3. Graph of the Monte Carlo reliability and of the exact reliability obtained from using
different number of trials.

Table 4.3

Results from the Monte Carlo method using MPI parallelism on a 5X5-Grid using different
number of trials.

Processors Rs,t(G,D) CPU-t (s) % Difference in Reliability
1 0.123218 4094.94 .086

10 0.123255 4126.91 .056
30 0.123250 4151.21 .060
50 0.123252 4205.73 .061

MC, we ran tests using the same 5x5-Grid undirected graph, where s and t correspond
to vertices 0 and 24, respectively, and whose exact reliability is 0.123324 (see Fig.
4.1-a). The total number of trials was fixed to one billion. We ran our tests using
1, 10, 30, and 50 processors as seen in table 4.2 column 1. Column 2 shows the
reliability obtained from the fixed trials using MC. Column 3 shows the execution
time to complete the trials. Column 4 shows the percentage difference in reliability
between our MC implementation and the exact evaluation. Figure 4.2 corresponds to
the graphical representation of the table.

Since our algorithm assigns each processor a unique seed for the random number
generator, we expect with more processors, thus more seeds, the reliability estimation
may become more accurate. However, the tests show that as the number of processors
grows, the accuracy of the reliability barely changes. Therefore, using a large number
of processors alone would not significantly affect the accuracy of the MC estimation.

4.3. Investigating the effects of increasing the total number of trials. To
investigate the effects of increasing the total number of trials, we have run tests using
the same 5x5-Grid graph (edge reliabilities are set to 0.5), and as in the previous
subsection, s and t correspond to vertices 0 and 24, respectively, and whose exact
reliability is 0.123324 (see Fig. 4.1-a). In order to test increasing the number of trials,
we’ve increased the number of processors and assigned one billion trials per processor,
which scales up the total number of trials. By using 1, 10, 30, and 50 processors as
depicted in table 4.3 (corresponding graphical representation is illustrated by Fig.
4.3) column 1, we were able to test the effects of using 1, 10, 30, and 50 billion trials.
Column 2 shows the reliability obtained from the increased trials using MC. Column
3 shows the execution time to complete the trials. Column 4 shows the percentage
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Fig. 4.4. Graph of the absolute difference between the exact reliability and the Monte Carlo
reliability obtained from using different random number ranges: hundred, thousand, and million as
the number of processors increase (the total trials are fixed to a billion).

Table 4.4

Results from the Monte Carlo method using MPI parallelism obtained from using different ran-
dom number ranges: hundred, thousand, and million on a 5X5-Grid with the number of processors
increasing (the total trials are fixed to a billion).

Ranges Processors Rs,t(G,D) CPU-t (s) % Difference in Reliability
Hundred 1 0.123218 4094.94 .086

5 0.123236 776.73 .071
10 0.123239 394.38 .069

Thousand 1 0.123467 3837.62 .116
5 0.123471 792.24 .119

10 0.123466 393.19 .115
Million 1 0.123428 3871.91 .084

5 0.123421 779.11 .078
10 0.123420 396.27 .078

difference in reliability between our MC implementation and the exact evaluation.
As the results show, the reliability obtained from using MC becomes more ac-

curate as the number of trials increases. However, we see that pass 10 billion trials
the change in reliability becomes less significant. With 10 billion trials, the reliability
obtained using Monte Carlo only differs from the exact reliability by .056 percent.

4.4. Testing the effects of generating a larger range of random numbers.
To investigate the effects of generating larger random number ranges, to either include
or delete an edge in a trial (see Section 3), we ran tests using the same 5x5-Grid graph
(edge reliabilities are set to 0.5), under the assumption that s = 0 and t = 24 (i.e.,
exact reliability is 0.123324). The random number ranges are hundred (i.e., range
[1,100], see Section 3), thousand, and million as depicted in table 4.4 column 1 (see
also Fig. 4.4). The tests were performed on 1, 5, and 10 processors (column 2) while
keeping the total number of trials fixed to a billion. Column 3 shows the reliability
obtained from the different ranges generated as the number of processors increased
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using MC. Column 4 shows the execution time to complete the trials, and column
5 shows the difference in reliability between our MC implementation and the exact
evaluation.

Since we are interested in how the reliability is affected by generating different
random number ranges, the chart in figure 4.4 illustrates the difference in reliability
estimated by the MC approach, compared to the exact evaluation as the number
of processors increase. As the results show, there isn’t a noticeable improvement in
reliability by increasing the range of random numbers generated.

5. Conclusions. The purpose of this work is to study an alternative way to
efficiently estimate the Diameter-Constrained Reliability (DCR) of a probabilistic
graph, and the method we chose was the Crude Monte Carlo method using MPI par-
allel processing. We were interested in studying how the DCR estimation is affected
by changing different factors when applying parallelism such as number of cluster
nodes, number of trials, and the possible range of numbers generated to either in-
clude or exclude an edge. We thought perhaps a large number of processors might
improve the reliability estimation, while maintaining the total number of trials con-
stant, because this would allow for more seeds for the random number generator.
Similarly, we consider the case of increasing the range of random numbers generated.
However, we found that neither the number of processors nor the random number
ranges generated (while keeping the other parameters fixed) played a significant role
in the reliability approximation. The total number of trials was shown to affect the
reliability approximation, but the changes in the reliability were insignificant after a
sufficiently large number of trials (10 billion in our case).
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