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Abstract

Recent experimentation has found that while newborn rats follow an exponential
distribution for wake bout distributions, older rats follow a power law distribution.
Understanding possible explanations for this phenomenon requires understanding
how transitions occur in metastable systems. Here we review some useful math-
ematical results and terminology in relation to networks and explore how several
different network structures affect the dynamics of this sleep-wake system. We also
employ several methods to identify possible transition mechanisms to help uncover
biological and mathematical reasons for the change in bout distributions. Studying
each mechanism, we relate the most prevalent transition mechanism for a system
with a given network architecture to the type of bout distribution observed and
correlate power law behavior to a gradual degradation mechanism and exponential
behavior to a mechanism involving the firing of well-connected nodes.

1 Introduction

Biological processes can be governed by or modeled with network dynamics. One such
example is the transition between sleep and wake states governed by two mutually in-
hibitory and self-excitatory neuronal networks. This is hypothesized to be a possible
network structure or sub-structure in the brains of many species [1, 2, 3]. Experiments
have shown that the wake bout distribution observed in infant rats is exponentially dis-
tributed, while older rats produced a power law distribution [4]. This implies a change
in the neuronal network structure present in the part of the brain that regulates this
sleep-wake system. Knowing what behavior to expect from different network architec-
tures becomes vital in predicting the causes and implications of this change in network
structure.

The actual sleep-wake rhythms are also important by themselves. The amount of time
spent in sleep and wake states is directly related to the amount of REM sleep obtained,
which is hypothesized to be a crucial component of many biological processes, such as long
term memory consolidation [16]. A power law distribution for older rats implies a higher
probability to be asleep for a shorter period of time. Extending this to humans makes
sense, as humans tend to need, or at least get, less sleep as they grow older, compared to
when they are infants. The question is whether the brain needs less sleep to function at
the same level which causes a change in brain structure, or if some natural, or unnatural,
change in the structure of the brain causes the bouts to be shorter. We aim to test the
plausibility of the latter question by considering the same dynamical rules for a neuronal
network under different architectures.

Although much is known about the brain, there are also many unknowns in terms of
specific structures responsible for the physiology that is observed in experiment. Because
of this, it is difficult to produce an accurate model of specific processes. Instead of
modeling a known system with pre-determined parameters, assumptions are made and
are put to use in various models. These models are then tested with different mechanisms
and parameters until the desired behavior is consistently reproduced. One such model is
a stochastically driven, competitive, firing rate model. However, simply having this basis
for a competitive network is not enough, as there are many ways to create a network
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that satisfies this condition. It has been found that parts of the brain display complex
network connections; that is that they contain an inhomogeneous mixture of features
characteristic of different types of networks. The key distinguishing feature among these
types of networks is how ordered or how random they are. Erdos and Renyi developed
the tools to create random graphs [12] and by extension, networks, which are binomially
degree distributed. If some kind of order is desired, scale free and small-world networks
have predictable degree distributions in the form of a power law, and have been used to
accurately model many real-world systems.[10]

The network model we used to describe this sleep-wake system was found to be
metastable [13], staying in one state for a long time and then suddenly changing states.
The distribution of the amount of time spent in each state has been shown to exhibit char-
acteristics of both exponential and power law distributions, dependent on the structure of
the network. An important factor in understanding these distributions is the transition
mechanism between states. Knowing how the system goes from one state to the other
allows us to predict when transitions will occur given a set of precursors, determine how
often these precursors appear, and validate conceptually the power law that has been
observed in experiment and simulation.

In this paper, we simulate the dynamics of a stochastic, competitive neuronal net-
work that has been shown to produce exponential and power law bout distributions for
certain choices of parameters. We study how network structure affects the dynamics,
transitions between states, and the amount of time spent in each state. Transition mech-
anisms are identified, formally defined, and then statistically associated with the network
architecture.

The rest of the paper is organized as such. Section 2 introduces the structure and
dynamics of the neuronal network model used. In Section 3, transition mechanisms for
varying network structures are discussed. Next, Section 4 describes the effect of changing
the intermediate state boundaries on bout length. Section 5 details an attempt at a
perturbation approach to find transition mechanisms and Section 6 concludes with a
summary of the important findings.

2 Description of Network

2.1 Network Terminology and Definitions

Cluster: A group of neurons responsible for one type of behavior, eg sleep or wake.
Directed: Networks can be directed or undirected. A directed network is one in which a
connection existing from node i to node j guarantees one way communication from i to
j, but not necessarily from j to i.
Degree: The degree of a node i, typically denoted by n, is the number of nodes connected
to node i, in an undirected network. In a directed network, there exists an in degree and
out degree. The in degree of node i refers to the number of nodes, j, that communicate
with node i, but node i does not necessarily communicate with any of the j nodes, though
this is possible. Similarly, the out degree is the number of nodes, j, that i communicates
with, but does not necessarily receive communication from.
Degree Distribution: The probability, P (n), that a randomly selected node has degree
n.

2.2 Network Architectures

2.2.1 Erdos-Renyi

An Erdos-Renyi network is a random network in which there is an equal probability for
any node to be connected to any other node, independent from the rest of the network. It
is created by considering each possible connection between two nodes i and j, generating
a uniform random number between 0 and 1, and creating the connection if said number
is less than p, the desired mean degree, divided by the total number of nodes in the
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system, N . The produced degree distribution is binomial. The degree distribution of any
particular node is given by

P (n) =

(
N − 1

n

)( p

N

)n (
1− p

N

)N−1−n

where n is the degree of the node.

2.2.2 Scale Free

Scale Free networks follow a power law degree distribution and are created by defining a
higher probability for a neuron to be connected to a neuron with more connections. The
network begins with m initial nodes and n initial connections. Nodes are then added to
the system one at a time until a desired amount, N , is reached. Every time a node is
added, it is connected to m other nodes with probabilities proportional to the sum of each
existing nodes in and out degree. Once the connecting nodes are chosen, the new node is
given out connections and the existing neurons are given an in connection. This creates
well-connected hubs that accurately model many real life systems [10]. The distribution
is given by

P (n) ∝ n−c

where c generally satisfies the inequality 2 < c < 3 [11].

2.3 Description of Network Dynamics

The system [13, 14, 15] is a directed, stochastic neural network progressing in time as a
continuous time Markov Chain utilizing the Gillepsie Algorithm to ensure a statistically
correct trajectory. Events are probabilistically generated by firing rates and depend only
on the current state of the system. This competitive network composed of two clusters,
one sleep and one wake, contain neurons that can be excited, inhibited, or in a base state.
These clusters are mutually inhibitory and self-excitatory, such that when one neuron
fires, it excites neighboring neurons in the same cluster and inhibits neighboring neurons
in the opposite cluster (Figure 1) in the following way. When neuron i fires, we look at
the state of all neurons with an incoming connection from neuron i. If in the same cluster,
the receiving neuron is excited to the next state, i.e. inhibited to base, or base to excited.
There is no effect on other excited nodes. If in the opposite cluster, the receiving neuron
is inhibited to the next state down, i.e. excited to base or base to inhibited. There is
no effect on already inhibited neurons. A neuron that is in an inhibited or excited state
may also relax, which returns the neuron to the base state. At any time step, one neuron
can fire or relax based on the rate of each event. Let fj and rj denote the firing rate and
relaxation rate, respectively, for a neuron in state j, where j can be excited (e), basal
(b), or inhibited (i). Rates were as follows for all simulations: fe = 0.016, fb = 0.03,
fi = 0.001, re = 0.005, and ri = 0.001. Neural connections were made in one of two
ways; Erdos-Renyi (Directed) and Scale-Free (Directed). Both inter-cluster and intra-
cluster connections were made in the same way. For the Scale-Free Network, preferential
attachment was performed across networks in the same way it was performed in a single
network, but with N

2 added to the index of node j.
Two quantities are measured during the course of the simulation, WE(t) and SE(t),

the fraction of excited nodes in the wake and sleep cluster, respectively. These quantities
are plotted against simulation time and used to determine when transitions occur. A
sample plot is shown in Figure 2 for scale free network couplings. The value of p is
the mean excitatory degree of nodes, q the mean inhibitory degree of nodes, and N the
number of neurons in the system.
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Competitive Network Model

Figure 1
A simple example network showing the
wiring for the two mutually inhibitory
and self excitatory networks.

Network Simulation

Figure 2
Example simulation using scale free con-
nections. N = 1000, p = 3.4, q = 4.08.

3 Transition Mechanisms

The first network type that was studied was an Erdos-Renyi connected network, with N =
100 and various values for the mean excitatory and inhibitory degrees, ranging from 1 to
about 7. It was observed that for every transition the fraction of excited nodes in the active
cluster would decrease until the fraction of excited nodes went down to approximately 0.3,
at which point neurons in the suppressed cluster would fire several times and overtake the
active cluster. Several quantities related to inhibition were calculated and tested to see
if they could accurately predict transitions. The number of neurons in the active cluster
that got inhibited and that got excited over ten time steps were calculated, the difference
between the two was taken, and it was compared to ten times the number of inhibitory
connections. This quantity was successful in finding transitions, but not predicting them.
By the time the measured quantity became greater than the criteria it was compared to,
the active cluster was already inhibited down to less than 0.3 fraction of excited nodes,
so that criteria might as well be used as a predictor, which is unacceptable. Several more
quantities were tested including ratios of the previous two quantities and the number
of excited and inhibited neurons from the inhibited cluster. Nearly the same results
were obtained for all quantities. These quantities predicted better with some network
connections over others, with the best predicting a transition when the fraction of excited
nodes was reduced to 0.45 and in the worst case, not predicting transitions at all.

A scale free network was constructed next using a preferential attachment algorithm
and the degree distribution was verified to be power law distributed by using a log-log
plot (Figure 3). Using a line of best fit approximation on the continuous part of the
distribution we find a slope of approximately −2.23. We can write the function in log-log
coordinates as

ln(P (k)) = −2.23 ∗ ln(k) + 9.95

where −2.23 is the power law exponent and e9.95 = 20952 is the proportionality constant
in the power law expression for P (k). Using this we get a degree distribution of

P (k) = 20952 ∗ k−2.23

This falls within the usual range of exponents for a scale free distribution, satisfying
2 < m < 3.
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Scale Free Degree Distribution Scale Free Degree Distribution (log-log)

Figure 3
The measured degree distribution for our scale free network algorithm. Note the straight
line on the log-log plot, verifying the power law distribution. Logs taken are the natural
logarithm.

Mass simulations were run using two different degree distributions for both the Erdos-
Renyi and scale free networks. A log-log plot of the bout distributions was constructed
for each network, which lead to observing small power law distributed regions followed
by an exponential tail for Erdos-Renyi network, and much larger power law regions again
followed by an exponential tail for the scale free network. Studying the network with the
largest power law distributed region, N = 100, p = 3.4, and q = 4.08, it seems that there
are two possible ways for a transition to occur. A well-connected excitatory node can fire
in the suppressed cluster and excite enough nodes to cause a cascade effect which will
excite the cluster even more while simultaneously inhibiting the opposite cluster. Define
this to be an excitatory Single Fire transition. The other possibility is similar to what was
noticed for Erdos-Renyi, where a well-connected inhibitory node in the suppressed cluster
fires which inhibits the active cluster and more easily allows for the possibility that the
suppressed cluster can fire and overtake the active cluster and become excited. Define
this to be an inhibitory Single Fire transition. In addition to this, there is a secondary
inhibitory transition that is not present for excitatory transitions, where the active cluster
is slowly withered down, as opposed to all at once inhibition, until the suppressed cluster
can overtake it to become excited. Define this to be a Gradual Degradation Transition.

Determining which mechanism any particular transition followed requires a discussion
of how the states are defined. First a base line average of WE and SE is computed over
many simulations for a fixed parameter set, N , p, and q. Boundaries are placed at some
point below and some point above this average value, and these boundaries define the
points at which a cluster is considered suppressed(mostly inhibited) and active(mostly ex-
cited), respectively. We discuss how to choose these boundaries and how different choices
affect the results in Section 4. A general transition occurs when the active cluster dips
below the lower boundary and the suppressed cluster rises above the upper boundary.
Now we can define a Single Fire Transition to be a transition in which a cluster goes
either directly from the active region to the suppressed region or directly from the sup-
pressed region to the active region, without entering the intermediate region between
the two boundaries. Let any transition that doesn’t satisfy this condition be a Gradual
Degradation transition.

The excitation first and inhibition first transition mechanisms that were identified can
be related to the ideas of escape and release in a mutually inhibitory neuronal network,
discovered by Wang and Rinzel [17]. In escape, the inhibited neuron can overcome the
inhibiting signal of the active neuron, under certain conductance conditions, and become
active itself. This is similar to the excitation first mechanism, in which a well-connected
excitatory node in the suppressed cluster fires, which allows more nodes to become excited
and fire, until a transition occurs, or the cluster is suppressed again. In release, the active
neuron sends a signal to the suppressed neuron, causing it to send a rebound signal that
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inhibits the active neuron. This does not have an exact analogue in our network, as it
is mutually inhibitory as well as self excitatory, in addition to our model being a firing
rate model, and not directly dependent on voltage and currents. The inhibition first
mechanism is initiated by a well connected inhibitory neuron in the suppressed cluster,
but we can not know if some activity in the active cluster causes it. Which of these two
occurs more often is dependent on which degree is higher, excitatory or inhibitory. The
same goes for the gradual degradation transitions, whichever degree is higher corresponds
to which of either inhibition or excitation occurs first, on average.

Distinguishing between inhibition first and excitation first transitions and recording
bout lengths, it was observed that the excitatory transitions follow a bout that is nearly
completely exponentially distributed; there is a very small power law distributed region
followed by an exponential tail. However, the inhibitory transitions follow a bout that
has the largest power law distributed region seen in any other measured bout distribu-
tion, again followed by an exponential tail (Figure 4). These inhibitory transitions are
approximately 8 times more frequent than excitatory as well.

Excitatory Transition Bout
Distribution (log-log)

Inhibitory Transition Bout
Distribution (log-log)

Figure 4
Comparison of the bout distributions from excitatory and inhibitory transitions. Note
that the excitatory transitions are possibly power law distributed over no more than 1.25
units on the log scale while the inhibitory transitions span nearly 3 units. For these
simulations, N = 100, p = 3.4, q = 4.08. The logs taken are the natural logarithm.

Using these same connections and conditions, the system was run again, except this
time distinguishing between inhibitory transitions caused by the Single Fire Mechanism
and the Gradual Degradation Mechanism. One would expect to see a nearly completely
exponential distribution when waiting for a specific node to fire, and a power law distri-
bution otherwise. This is exactly what was observed of the bout distributions, as shown
in Figure 5.
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Excitatory Single Fire Transition
Distribution (log-log)

Inhibitory Single Fire Transition
Distribution (log-log)

Inhibitory Gradual Degradation
Distribution (log-log)

Figure 5
Bout distributions measured after distinguishing between all types of transition mecha-
nisms. Note the gradual transition mechanism is the only one that has any behavior that
can be thought of as power law distributed. Logs taken are the natural logarithm.

To quantitatively verify the identified transition mechanisms, phase plane diagrams
were constructed by plotting WE(t) against SE(t) for 50 to 75 time steps before and
after transitions of each type. Some example diagrams are shown in Figure 6, with the
trajectory following the path in the blue to red direction. Single-Fire Transitions that
are characterized by a sudden spike in the fraction of excited nodes are apparent in the
phase plane diagrams as an initial large spike followed by a transition to the other state.
Gradual Degradation Transitions on the other hand follow a somewhat erratic path, but
with a general flow in one direction over time. These plots show that there are at least
two distinct methods in which a transition can occur, and they correspond to the two
mechanisms found qualitatively.

In a simpler 2 neuron inhibitory model from Patel and Joshi [18], the notions of inhi-
bition first and excitation first transitions are also prevalent. Transitions in their system
also seem to behave more like the Single Fire mechanism than the Gradual Degradation
mechanism that we have identified, due to the nature of the system. Inhibition is received
from signals from the opposing neuron while excitation is maintained through noise. As
soon as a spike in the noise or inhibition is seen, the system is almost guaranteed to tran-
sition, which sounds like the Single Fire mechanism in our system. They also find that
bout distributions are all exponentially distributed. This is a good verification for the
Single Fire bout distributions measured here. It seems that adding an additional layer to
the network that is responsible for excitation, rather than leaving it up to noise, changes
the dynamics enough to allow for the Gradual Degradation mechanism, and possibly the
power law behavior observed in experiment and simulation.
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Gradual Degradation Example

a) An example system with a Gradual
Degradation Transition around simula-
tion time 3300.

Single Fire Example

b) An example system with a Single Fire
Transition around simulation time 1250.

Gradual Degradation Phase Plane

c) Phase plane diagram for the system in
a) near the transition at simulation time
3300. The trajectory goes from blue to
red. The path followed is erratic but gen-
erally trends slowly in a single direction
towards the new state.

Single Fire Phase Plane

d) Phase plane diagram for the system in
b) near the transition at simulation time
1250. The trajectory goes from blue to
red. The path consists of an initial spike
followed by an almost immediate transi-
tion to the new state.

Figure 6
Example system realizations that contain a Gradual Degradation Transition (a) and a
Single Fire Transition (b) and the corresponding phase plane diagrams near the transi-
tions.

4 Change of Intermediate State Boundaries

In choosing boundaries for the intermediate state, a question of what values to select for
them arises. A good choice of boundary values would result in a small disturbance or no
disturbance in the measured bout distributions for a small change in the boundary values,
since the boundaries exist only to provide a more accurate way of finding and defining
transitions. Given this criterion, it would be expected that the Single Fire Mechanism’s
distribution would not change at all but the Gradual Degradation Mechanism’s distribu-
tion would slightly increase or decrease, depending on if the intermediate boundary was
pushed further or closer to the sleep or wake states.

The bout distributions shown in Figures 4 and 5 were obtained using the average
value of WE and SE to define a base line, at 0.35, and placing the boundaries at 0.25 and
0.55. The boundaries were chosen asymmetrically in order to have as big a sleep region as
possible for the lower boundary, since the average value of 0.35 is significantly less than
0.5, while still accurately choosing an upper boundary to mark where transitions start
and finish. The bout distributions were measured again using 0.35 as a base line and
0.35± 0.1 as boundaries. The plots are shown in Figure 7.
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Excitatory Single Fire Transition
Distribution (log-log)

Inhibitory Single Fire Transition
Distribution (log-log)

Inhibitory Gradual Degradation
Distribution (log-log)

Figure 7
The same bout distributions measured in Figure 5 using symmetric boundaries for the
intermediate state. Note the plots are nearly identical with a slight bias toward shorter
bouts for the Gradual Degradation Mechanism. Logs taken are the natural logarithm.

As expected, the plots for the Single Fire Mechanism are unaffected by the change in
boundary, since the large spikes push WE and SE well past the boundary in essentially
all instances. On the other hand, the Gradual Degradation bout distribution displays a
subtle shift toward shorter bout lengths and a more pronounced power law distributed
region. To see how big of a difference there is between the two distributions, the power law
distribution was recovered from the log-log plot for the symmetric and asymmetric case,
using the same method to determine the degree distribution of the scale free network.
For the symmetric boundaries the power law region can be described as

P (t) = e15.03 ∗ t−1.04

and for the asymmetric boundaries

P (t) = e14.75 ∗ t−0.98

This shows that there is indeed a small change in the Gradual Degradation bout
distribution for the symmetric boundaries and there is a more pronounced power law, as
expected. Since the intermediate state is 0.1 units smaller and only transitions caused
by a large amount of small inhibitions are considered, it makes sense that transitions
would be on the order of 5-10 time steps shorter, accounting for the difference in these
two distributions.

5 Perturbation Approach

The first attempt at uncovering a transition mechanism was to do a perturbation analysis
similar to the one outlined in Ansmann [6] on the Erdos-Renyi connected neural network.
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The setup we made use of is summarized as follows. In a system of N coupled differential
equations for excitable units, the average state value was measured. An extreme event
was defined as a spike in this average that went above a specified value. A perturbation
analysis was performed in which perturbations were made in increasing magnitude at
a specified time before a spike and also at a specified magnitude at increasing times
before a spike. The probability that the spike could no longer be observed was estimated
by generating many realizations of the perturbed system with perturbations of equal
magnitude but different direction, and taking the ratio of cases the extreme event was
not observed to the total number of trials. This probability was found to generally be
linear and increasing with decreasing time before a spike and increasing magnitude of
perturbation. Generating mechanisms were therefore hypothesized to come into play a
short time before extreme events. This provided a way to narrow the search to a specific
region and search for patterns consistent among the extreme events.

To extend this approach to our network, the system was run undisturbed and the time
of transitions was first noted manually by a guess and check method where the fraction of
excited nodes in the excited cluster went below 0.5 and the inhibited cluster above 0.5. At
varying times before the marked transition a single node or group of nodes was disturbed
by changing their state from either excited to inhibited or vice versa or by changing the
node that fired during that time step. The purpose was to see the effect this would have on
the transition; either destroying it, delaying it, or not really affecting it. Numerous trials
on different realizations of the network showed that small to medium sized perturbations
(changing any less than about half of the nodes) did not have a short term enough effect
to disturb the transition, but caused wildly different behavior much later on, implying the
system was chaotic. Making perturbations that affected greater than half of the nodes or
changing the state of a well-connected node responsible for the transition would generally
delay the transition, but the delay would increase when perturbations were made a longer
time before the transition, implying it was due to the chaotic nature of the system and
not some underlying mechanism. (Figure 8) This is likely due to the stochastic nature of
our system compared to the deterministic differential equation model used in Ansmann.
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Standard Simulation

a) An example system run undisturbed
with N = 100, p = 6, and q = 9. WE

and SE are the fraction of excited nodes
in the wake cluster and sleep cluster, re-
spectively. Note the transition from sleep
to wake at simulation time 6000.

Perturbed System 1

b) The same system as a) but with the neuron
responsible for the transition inhibited two
time steps prior to the transition. The transi-
tion still occurs but the bout length has been
decreased.

Perturbed System 2

c) The same system as a) but with the neuron responsible for
the transition inhibited fifty time steps prior to the transition.
In this trial the transition has been destroyed and the system
exhibits radically different end behavior.

Figure 8

6 Conclusion

The dynamics of our neural network under various architectures and node connections
have been described. The original goal was to identify possible transition mechanisms,
see how they depend on the network type used, and use this to determine the origin of
the observed power law behavior. A Single-Fire Mechanism was identified, where a single
well-connected node firing can cause a transition from a cascade effect. Also identified
was a Gradual Degradation Mechanism in which the active cluster is slowly withered from
firing in the suppressed cluster until it can be overtaken in a gradual transition. These
mechanisms were verified and a visualization of each was shown by plotting a phase plane
diagram around different transitions.

From the data, it is safe to conclude that something present in the Gradual Degrada-
tion Transition Mechanism causes this power law phenomenon. Comparing to the Single
Fire Transitions, we can see that waiting for a specific neuron to fire will cause the bout
distribution to be exponential, as one would expect, so it is the Gradual Degradation
Mechanism that is responsible for the power law regions. Exponential distributions can
be thought of as representing independent attempts at overcoming a potential barrier [7],
which makes sense in the context of waiting for a neuron with enough connections to fire.
Power law distributions on the other hand, are more complex. Power laws emerging for
certain quantities in a thermodynamic system have been associated with phase transi-
tions[8]. This result makes sense in the context of our system as well, however it remains
to figure out what exactly about this mechanism causes the power law behavior and how
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to predict when transitions will occur.
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