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Abstract

In this paper, we explore fluid flow caused by the presence of an insoluble
surfactant on a thin, incompressible power-law fluid over a horizontal substrate.
The gradient in surface tension caused by the surfactant results in fluid flow away
from the region where the surfactant was deposited. Work has been conducted
with Newtonian fluids and surfactants; however, the extensive effect surfactants
have on non-Newtonian fluids has not been studied as thoroughly.

Using the lubrication approximation, we derive a system of coupled nonlinear
partial differential equations (PDE) governing the evolution of the height of the
fluid and the spreading of the surfactant. We also numerically simulate our system
with a finite difference method and vary the power-law index to explore differences
in profiles of shear-thickening and shear-thinning fluids. Next, we find significant
agreement between our results and previous studies involving Newtonian fluids
with power-law relations. Finally, we determine similarity scalings and solutions
around the leading edge of the surfactant, which describe the behavior of the fluid
and surfactant towards the region of the fluid where the surfactant ends.

1 Introduction

Surfactants, compounds which lower surface tension, have been investigated in conjunc-
tion with fluids due to the flow they cause. The local changes in surface tension caused
by surfactants results in flow, known as Marangoni flow, away from where the surfactant
was deposited. This flow has been studied extensively with Newtonian fluids, but not
as much headway has been made with non-Newtonian fluids and surfactants. Jensen,
Gaver, Grotberg, and Naire studied the spreading of surfactant on thin liquid films as
they determined the equations and investigated properties of solutions analytically and
numerically in a series of papers [7, 8, 9, 10, 11, 12]. Other researchers have studied the
same fluid flow with simulations [4, 15, 18] and experiments [2, 6]. While non-Newtonian
fluids, characterized by their nonlinear stress-strain relationships or non-zero yield stress,
do not lend themselves to the more elegant, concise arguments of their Newtonian coun-
terparts, there are still innumerable practical applications of non-Newtonian fluids. In
nature, the slow flow of non-Newtonian fluids is found in the lining of human lungs [20],
the flow of molten liquids [3], and the movement of microorganisms [13]. In medicine,
understanding more fully how surfactants interact with non-Newtonian fluids has the
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Figure 1: A thin fluid over a solid, horizontal substrate with a drop of an insoluble
surfactant. The height scale, H, is assumed to be much less than the length scale, L.

potential to aid in alleviating symptoms of cystic fibrosis and even to increase effec-
tiveness of treating respitory distress syndrome with surfactant replacement therapy
[22].

In this work, we investigate how an insoluble surfactant spreads on a thin, incom-
pressible non-Newtonian fluid with a power-law relation on a horizontal substrate. In
Section 2, we apply the lubrication approximation to derive a system of nonlinear par-
tial differential equations (PDE) governing the evolution of the height of the fluid and
the spreading of the surfactant. We non-dimensionalize the system and the associated
boundary and initial conditions in preparation to numerically simulate the system with
a finite difference method in Section 3. We find agreement between our results and
previous studies conducted with Newtonian fluids [7, 9, 18, 19]. Additionally, we vary
the power-law index to see the effect it has on the height and surfactant profiles and
determine similarity scalings in Section 4.

2 The Model

Consider a thin, incompressible non-Newtonian fluid on a horizontal substrate with an
insoluble surfactant, as shown in Figure 1, where the height of the fluid, z = h(x, t), is
initially uniform. The surfactant sits on top of the fluid and the concentration of the
surfactant is denoted as Γ = Γ(x, t). Motivated by the droplet of surfactant and fluid
spreading evenly from the center of where the surfactant was deposited, we consider two
dimensional spreading: x for length and z for height.

With thin fluids, a general assumption made is that the height scale H is much
smaller than the length scale L, or H � L. We assume H

L = ε� 1. This is referred to
as the lubrication approximation, and aids in discerning dominant terms when deriving
the governing equations. Another condition we assume is that the fluid has a slow flow.
This assumption follows from the lubrication approximation and allows inertial effects
on the fluid’s flow to be ignored.

In this section, we derive the system of nonlinear PDE governing the evolution of
the height of the fluid and spreading of the surfactant.

2.1 Deriving Equations

Perazzo and Gratton [17] derived the governing equations for a thin, incompressible
power-law fluid flowing down an incline. However, their work was in three dimensions,
incorporated gravity, and did not include a surfactant. Following a similar technique,
we derive the equations for the two-dimensional spreading of a thin fluid with an in-
soluble surfactant on a horizontal surface. We begin with the Stokes equations in two
dimensions:
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Figure 2: A square of fluid on the xz plane with stress tensor components pictured.

−∂xp+ ∂xτxx + ∂zτxz = 0, (1a)

−∂zp+ ∂xτzx + ∂zτzz = 0, (1b)

ux + wz = 0, (1c)

where

τij = 2AE
1−λ
λ ξ̇ij (2)

is the stress tensor component of the stress acting on the i face of the fluid in the j
direction. For example, consider a cube of fluid on the xz plane as shown in Figure
2. τxz would represent the stress acting on the x side of the square tangentially in

the z direction. In (2), A is a positive constant, E =
(
ξ̇ij ξ̇ij

) 1
2

, ξ̇ij = 1
2 (∂j~ui + ∂i~uj)

(using tensor notation with repeated subscripts denoting summation), and ~ui is the
i component of the velocity vector ~u = 〈u (x, z) , w (x, z)〉 . Applying the lubrication

approximation, we simplify ξ̇ij ξ̇ij = 1
2 (∂zu)

2
.

Equation (2) is also dependent on λ, which is a parameter related to the power-
law index of the fluid. If a fluid has a λ-index equal to 1, then it signifies the fluid
is Newtonian. A fluid with λ > 1 indicates the fluid is shear-thinning, while shear-
thickening fluids have a value of λ < 1. The power-law relationship is discussed in more
detail in Section 3.3.

Additionally, using the lubrication approximation in (1a), we look at the order of
magnitude of τxx and τxz:

τxx ∼ ξ̇xx =
1

2
(∂xu+ ∂xu) = ∂xu ∼

U

L
,

τxz ∼ ξ̇xz =
1

2
(∂zu+ ∂xw) ∼ ∂zu ∼

U

H
,

where U is the velocity scale of the fluid.

Since H � L, we know U
L �

U
H and consequently, τxx � τxz. So, (1a) is reduced

to −∂xp+ ∂zτxz = 0. In a similar fashion, we look at the scalings of components of the
stress tensor terms in (1b):

τzx ∼ ξ̇zx =
1

2
(∂xw + ∂zu) ∼ ∂zu ∼

U

H
,
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τzz ∼ ξ̇zz =
1

2
(∂zw + ∂zw) ∼ ∂zw ∼

W

H
∼ εU

H
� 1.

The magnitude of τzx is much less than the magnitude of the pressure term L
U

obtained from balancing leading order terms with the non-dimensionalization of (1a).
Furthermore, we find that the τzz term is negligible. With these observations, we reduce
(1) to

−∂xp+ ∂zτxz = 0 (3a)

∂zp = 0. (3b)

Substituting in the stress tensor component (2) gives the reduced Stokes equations:

−px +

(
Auz

(
1√
2
uz

) 1−λ
λ

)
z

= 0 (4a)

pz = 0. (4b)

Equation (4) agrees with the work of Perazzo and Gratton in [17], disregarding the
third dimension and components of gravity.

2.2 Boundary Conditions

• No-Slip: We assume the horizontal substrate at z = 0 to be at rest, resulting in
the no-slip boundary condition

u = 0 at z = 0. (5)

• Normal Stress: Assuming the pressure at the surface of the fluid equals the atmo-
spheric pressure gives the normal stress boundary condition

p = patm at z = h (x, t) . (6)

Traditionally, the normal stress boundary condition also takes into account the
surface tension and curvature of the fluid since the force on the film from the
atmosphere must be balanced with the pressure from the film at the top of the
fluid. This can be expressed as p = patm − γκ, where γ is the surface tension of
the fluid and κ is the curvature. However, including these terms does not allow
for similarity solutions to be found.

• Tangential Stress: The change in surface tension from the surfactant results in
a stress on the surface of the film acting tangentially to the film, suggesting the
tangential stress boundary condition

∂

∂x
σ (Γ) = Auz

(
1√
2
uz

) 1−λ
λ

at z = h (x, t) . (7)

2.3 Integration

To derive the thin film equations, we integrate the reduced Stokes equations from (4)
and apply boundary conditions (5), (6), and (7).

Integrating (4b) with respect to z once, applying the normal stress boundary condi-
tion (6), and taking the partial derivative with respect to x results in
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px = 0.

Substituting px = 0 into (4a), applying the tangential stress boundary condition (7)
to solve for the constant of integration, and dividing through by constant variables to
isolate uz gives

uz (x, z, t) =
1

Aλ
√

2
λ−1

(σx)
λ

Integrating with respect to z again and applying the no-slip boundary condition (5)
yields

u (x, z, t) =
1

Aλ
√

2
λ−1

(σx)
λ
z. (8)

2.4 Depth Average Velocity

With a thin film, taking a depth-average of the velocity over the thickness of the film
gives a good approximation of the velocity at any spatial point. We denote the depth
average velocity as ū,

ū =
1

h

∫ h

0

u dz,

where h is the height of the film.
Evaluating ū with the velocity from (8) results in the depth average velocity:

ū =
1

h

1

Aλ
√

2
λ−1

(σx)
λ h

2

2
. (9)

2.5 Conservation of Mass of Fluid

Since the fluid is assumed to be incompressible, the mass of the fluid must be conserved.
Considering two spatial points x = a and x = b, we create a relationship between the
net flux of the fluid through these two points and the height of the fluid:

d

dt

∫ b

a

h dx = Fa − Fb, (10)

where Fa and Fb are the respective fluxes, and can be written as Fa=hū|x=a and
Fb=hū|x=b. Using the Fundamental Theorem of Calculus, the right side of (10) can
then be expressed as an integral as well, which gives

d

dt

∫ b

a

h dx =

∫ a

b

∂

∂x
(hū) dx.

With some integral arithmetic, we arrive at∫ b

a

∂

∂t
h+

∂

∂x
(hū) dx = 0.

Since the integral equals 0 over any two arbitrary points a and b, we know the
integrand must equal 0 by the du-Bois Reymond lemma (or the fundamental lemma of
calculus of variations), implying

ht + (hū)x = 0.
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Substituting the depth average velocity from (9) gives the equation for the evolution
of the height of the fluid:

ht +

(
1

Aλ
√

2
λ−1

(σx)
λ h

2

2

)
x

= 0. (11)

2.6 Conservation of Mass of Surfactant

Similar to the mass of the fluid being conserved, the mass of the surfactant will be
conserved as well. Using the insolubility of the surfactant, we write a relationship of

d

dt

∫ b

a

Γ dx = FΓ
a − FΓ

b , (12)

where FΓ
a and FΓ

b are the amounts of the surfactant passing through two spatial points
x = a and x = b in the fluid. These can be written as FΓ

a = Γu|z=h(a,t) and FΓ
b =

Γu|z=h(b,t) respectively. We use the fluid velocity (8) evaluated at z = h at both points
instead of using the depth average velocity since the insoluble surfactant will be at the
top of the fluid due to its immiscible nature. We write the right side of (12) as an
integral using the Fundamental Theorem of Calculus,

d

dt

∫ b

a

Γ dx =

∫ a

b

∂

∂x
(Γu) dx,

which can be rewritten as ∫ b

a

∂

∂t
Γ +

∂

∂x
(Γu) dx = 0.

Again, since the integral evaluated at any two points a and b will be 0, we know the
integrand must be 0 by the du-Bois Reymond lemma. This leaves us with the equation
for the spreading of the surfactant after we substitute in the velocity (8) at z = h:

Γt +

(
Γ

Aλ
√

2
λ−1

(σx)
λ
h

)
x

= 0. (13)

2.7 Non-Dimensionalization

Consider the change of variables: x=Lx̂, z=Hẑ, t=T t̂, σ=Sσ̂, Γ = CΓ̂, where x̂ and ẑ
are non-dimensional spatial variables, t̂ is the non-dimensional time variable, σ̂ is the
non-dimensional surface tension, Γ̂ is the non-dimensional surfactant concentration, and
L,H, T, S, C are dimensional scalings of each respective variable.

Implementing these into (11) and (13) yields

H

T
ĥt̂ +

H2

L

(
S

L

)λ
1

Aλ
√

2
λ−1

(
(σ̂x̂)

λ ĥ
2

2

)
x̂

= 0, (14a)

C

T
Γ̂t̂ +

HC

L

(
S

L

)λ
1

Aλ
√

2
λ−1

(
Γ̂ (σ̂x̂)

λ
ĥ
)
x̂

= 0. (14b)

Balancing the coefficients of each equation leads to the same relation

T =
Lλ+1Aλ

√
2
λ−1

SλH
.
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Multiplying (14a) and (14b) by T
H and T

C respectively and dropping the hats gives
the non-dimensional equations

ht +

(
(σx)

λ h
2

2

)
x

= 0, (15a)

Γt +
(

Γ (σx)
λ
h
)
x

= 0. (15b)

The surface tension, σ=σ (Γ), of the fluid is only dependent on the surfactant con-
centration, Γ. We use the linear equation of state:

σ (Γ) = 1− Γ, (16)

which has been commonly used in mathematical studies, [5, 11, 14, 15]. Taking the
derivative of σ (Γ) with respect to x results in σx=−Γx. Substituting this into (15a)
and (15b) provides the system:

ht +

(
(−Γx)

λ h
2

2

)
x

= 0, (17a)

Γt +
(

Γ (−Γx)
λ
h
)
x

= 0. (17b)

We apply the initial conditions

h (x, 0) = h0 (x) = 1 (18a)

Γ (x, 0) = Γ0 (x) =

{
1− x2, |x| < 1

0, otherwise
(18b)

and boundary conditions from the symmetry of the spreading

hx (0, t) = 0, Γx (0, t) = 0.

to determine the two remaining boundary conditions determined from the jump condi-
tion, as identified in [8] and further explored in [18].

2.8 Jump Conditions

In surfactant-driven fluid flow, the surfactant causes a gradient in the surface tension of
the fluid, resulting in Marangoni flow away from the surfactant. Since the surfactant is
a collection of discrete molecules, there is going to be a point in the surfactant profile,
defined as the leading edge x0 (t), where there is a transition from the region with
surfactant to the region without surfactant. This suggests

Γ (x0, 0) = 0

as one of the boundary conditions since the surfactant concentration maintains compact
support shown in [18]. With the shift in the surfactant profile from Γ > 0 to Γ = 0, there
is a resulting jump in Γx which triggers a jump in h. Employing the Rankine-Hugoniot
jump condition and following an argument similar to those in [7, 19], we are able to
determine jump conditions for our system:
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d

dt
Γ (x0 (t) , t) = ẋ0Γx + Γt = 0. (19)

which resembles the Linear Transport Equation, where s = ẋ0 is the wave speed. Sub-
stituting (19) into (17b) yields

ẋ0Γx =
(
hΓ (−Γx)

λ
)
x
.

Expanding the right hand side and noting Γ (x0 (t) , t) = 0 implies

ẋ0Γx = hΓx (−Γx)
λ
.

Dividing through by Γx 6= 0 results in

ẋ0 = h (−Γx)
λ

and suggests the transport speed is s = h (−Γx)
λ
. We define

h− = lim
x→x−

0

h, h+ = lim
x→x+

0

h, (20a)

Γ−x = lim
x→x−

0

Γx < 0, Γ+
x = lim

x→x+
0

Γx = 0. (20b)

The leading edge of the surfactant moves with the surface velocity of the fluid.

Therefore, the transport speed is s = h− (−Γ−x )
λ
. From there, we know

s[h] =

[
1

2
h2 (−Γx)

λ

]
,

where [ ] denotes a jump. For example, [h] = (h+ − h−) .

Substituting in s = h (−Γx)
λ

and expanding the h and Γx terms, we are left with

h−
(
−Γ−x

)λ (
h+ − h−

)
=

1

2

((
h+
)2 (−Γ+

x

)λ − (h−)2 (−Γ−x
)λ)

.

Applying (20b) and dividing through by h− (−Γ−x )
λ 6= 0 leaves(

h+ − h−
)

= −1

2
h−,

which reduces down to a jump condition at x = x0 (t):

h− = 2h+. (21)

Thus, the height profile will jump to twice its initial height due to the jump in Γx
and the final boundary condition is h (x0, t) = 2. The jump conditions found for New-
tonian fluids with surfactant in [7, 8, 19] are in agreement with the jump conditions for
a non-Newtonian fluid, (21).

Therefore, the boundary conditions for (17) are

h (x0, t) = 2, Γ (x0, t) = 0, (22a)

hx (0, t) = 0, Γx (0, t) = 0. (22b)
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3 Numerical Method

In this section, we discuss the numerical method used to investigate the behavior of the
height and surfactant profiles.

3.1 Numerical Method

Since the leading edge x0 is not set, we will solve a moving boundary problem as the
domain where the solution is defined, [0 < x < x0], evolves with time. We define a new
spatial variable, ξ = x

x0(t) , which uses the leading edge of the surfactant profile to scale

the domain for the height and surfactant profiles (17) to the domain of [0,1]. A similar
argument has been employed by Peterson and Shearer, [18]. Consider

h̃ (ξ, t) = h (x, t) , Γ̃ (ξ, t) = Γ (x, t) , ξ =
x

x0 (t)
.

Dropping the ,̃ (17a) and (17b) become

ht −
ẋ0

x0
ξhξ =

1

xλ+1
0

(
h2

2
(−Γξ)

λ

)
ξ

(23a)

Γt −
ẋ0

x0
ξΓξ =

1

xλ+1
0

(
hΓ (−Γξ)

λ
)
ξ

(23b)

on 0 ≤ ξ ≤ 1 where the corresponding initial conditions are

h (ξ, 0) = 1, (24a)

Γ (ξ, 0) =

{
1− ξ2 ξ < 1

0 ξ ≥ 1
, (24b)

and boundary conditions are

hξ (0, t) = 0, Γξ (0, t) = 0, (25a)

h (1, t) = 2, Γ (1, t) = 0. (25b)

We solve for the speed of the leading edge of the surfactant, ẋ0, by evaluating (23b)
at ξ = 1 and noting Γ (1, t) = 0 and Γt (1, t) = 0 to find

− ẋ0

x0
Γξ

∣∣∣∣
ξ=1−

=
1

xλ+1
0

(
hΓξ (−Γξ)

λ
) ∣∣∣∣

ξ=1−
.

Multiplying through by x0 and dividing both sides through by Γξ 6= 0 yields

ẋ0 = − 1

xλ0
h (−Γξ)

λ

∣∣∣∣
ξ=1−

. (26)

3.2 Numerical Scheme

We use a finite difference method to numerically simulate the transformed system (23)
and (26).

Let hnj ≈ h(j∆ξ, n∆t) and Γnj ≈ Γ(j∆ξ, n∆t) where ∆ξ = 1
N and N is the number

of grid points (we used N = 1000 for our simulations). We use a centered difference
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in space and backward difference in time to discretize the system. Since we used a
centered difference in space, we use LU decomposition to find the 3-banded n×n diagonal
Jacobian matrix. The discretized system of (23) and (26) are implicitly defined as the
system

hn+1
j − hnj −∆tξj

xn+1
0 − xn0
xn0 ∆t

(
hn+1
j+1 − h

n+1
j

∆ξ

)
+

∆t

(xn0 )
λ+1

∆ξ

1

2

(
hn+1
j+1 + hn+1

j

2

)(
Γn+1
j − Γn+1

j+1

∆ξ

)λ
− 1

2

(
hn+1
j−1 + hn+1

j

2

)(
Γn+1
j−1 − Γn+1

j

∆ξ

)λ = 0,

(27a)

Γn+1
j − Γnj −∆tξj

xn+1
0 − xn0
xn0 ∆t

(
Γn+1
j+1 − Γn+1

j

∆ξ

)
+

∆t

(xn0 )
λ+1

∆ξ

(hn+1
j+1 + hn+1

j

2

)(
Γn+1
j+1 + Γn+1

j

2

)(
Γn+1
j − Γn+1

j+1

∆ξ

)λ−
∆t

(xn0 )
λ+1

∆ξ

(hn+1
j−1 + hn+1

j

2

)(
Γn+1
j−1 + Γn+1

j

2

)(
Γn+1
j−1 − Γn+1

j

∆ξ

)λ = 0,

(27b)

xn+1
0 = xn0 + hn+1

j

∆t

(xn0 )
λ

(
Γn+1
j−1

∆ξ

)λ
.

(27c)

Initial and boundary conditions corresponding to (24) and (25) include

h0
j = 1, Γ0

j = 1− ξ2
j ,

hn0 = hn1 , Γn0 = Γn1 ,

hnN = 2, ΓnN = 0.

Finally, we employ Newton’s method to solve for solutions of (27).

3.3 Varying λ

We consider a power-law relation due to the relative simplicity of the apparent viscosity
η, which is commonly expressed as [1]

η = K|γ̇|n−1, (28)

where K is a positive constant, γ̇ is the shear rate, and n is the deviation from the
Newtonian fluid power-law index of n = 1. For example, a fluid with a power-law index
of n = 1 would be a Newtonian fluid, n > 1 would indicate a shear-thickening fluid,
and n < 1 would signify a shear-thinning fluid. Table 1 gives values for the power-law
indices for several non-Newtonian fluids with n < 1.

In Section 2.1, we defined the stress tensor (2). The stress tensor can be related to
the apparent viscosity with
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Table 1: Well-known shear-thinning fluids, [1].

Material K n

Ball-point pen ink 10 0.85
Fabric Conditioner 10 0.6
Molten Chocolate 50 0.5

Toothpaste 35 0.3
Skin cream 45 0.1

Figure 3: The height profile h (x, t) for λ = 0.5, 1.0, 1.5, and 2.0 for t = 1000 with
∆x = .001.

τ = ηξ̇ij , where η = 2AE
1−λ
λ . (29)

Letting K = 2A, γ̇ = E, and n = 1
λ , we make substitutions into (29) and recover (28).

Figure 3 illustrates the influence of λ on the height and surfactant profiles. This
profile is in agreement with the idea that fluids with a higher λ-index flow more slowly
than fluids with a lower λ-index, corresponding to shear-thinning fluids (n < 1) flowing
slower than shear-thickening fluids (n > 1).

4 Similarity Solutions

In this section, we explore the solutions near the leading edge of surfactant in the height
and surfactant profiles with a similarity scaling analysis and find the explicit similarity
solutions. We also compare our numerics and similarity solutions to previous work with
Newtonian fluids, [9, 18].

4.1 Similarity Scaling

Consider the spatial variables to be scaled by time:

h = tµH (ρ) , Γ = tνG (ρ) , where ρ =
x

tβ
. (30)
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Then, (17a) and (17b) become

µtµ−1H − βtµ−1ρH ′ + t2µ+νλ−βλ−β
(
H2

2
(−G′)λ

)′
= 0, (31a)

νtν−1G− βtν−1ρG′ + tν+µ+νλ−βλ−β
(
GH (−G′)λ

)′
− 0, (31b)

where ′ denotes d
dρ . From balancing powers of t, we get the same relation from (31a)

and (31b) of
0 = µ+ 1 + νλ− β (λ+ 1) . (32)

The conservation of the surfactant,∫ tβ

0

Γdx =

∫ 1

0

tν+βG (ρ) dρ,

suggests
ν + β = 0. (33)

Also, the boundary condition of h (1, t) = 2 from (25b) implies

µ = 0. (34)

From (32), (33), and (34), we find

µ = 0, ν = − 1

2λ+ 1
, β =

1

2λ+ 1
. (35)

Implementing these scalings into (31a) and (31b) results in

− 1

2λ+ 1
ρH ′ +

(
H2

2
(−G′)λ

)′
= 0, (36a)

− 1

2λ+ 1
(ρG)

′
+
(
HG (−G′)λ

)′
= 0. (36b)

Integrating (36b) yields

− 1

2λ+ 1
(ρG) +HG (−G′)λ = k, (37)

where k is a constant; however, since we know k is constant for all values of H and G on
the domain [0, x0] and also that G (ρ) = 0 at x = x0 from (22a), we determine k = 0.

From here, we pull out G to get:

G

(
− 1

2λ+ 1
ρ+H (−G′)λ

)
= 0.

Since G 6≡ 0, we know

H (−G′)λ =
1

2λ+ 1
ρ.

Substituting into (36a) results in

− 1

2λ+ 1
ρH ′ +

(
Hρ

2 (2λ+ 1)

)′
= 0,

106



Figure 4: Log-log plot of the leading edge of surfactant x0(t) vs. t with data from
λ = 1. The comparison line (red) has slope 1/3.

which simplifies to
H = ρH ′.

Using separation of variables and applying the jump condition indicates

H (ρ) = 2ρ. (38)

Substituting (38) into (36b) gives

G′ = −
(

1

2 (2λ+ 1)

) 1
λ

.

Integrating and applying the initial condition of G(1) = 0, we find

G (ρ) =

(
1

2 (2λ+ 1)

) 1
λ

(1− ρ) . (39)

Letting λ = 1 transforms both (38) and (39) into the same equations found for the
Newtonian case in [10].

When we compare the spatial variable ρ = x
tβ

to the spatial variable ξ = x
x0(t) in

Section 3.1, we are examining the independence of x0(t) on t as illustrated in the log-log
plot in Figure 4 with data from the λ = 1 case (where β = 1

3 from equation (35)). The
resulting graph is a straight line (in blue) with slope 1

3 . For comparison, a red line with
slope 1

3 is also plotted. Thus, the leading edge of the surfactant profile is similar to

the scaled time, x0(t) ∼ t1/3. Analogous arguments can easily be made for λ = .5 and
λ = 1.5 to show x0(t) ∼ t1/2 and x0(t) ∼ t1/4 for their respective cases. Accordingly,
the numerical simulations verify the scalings of the spatial variable with respect to time
as found above.

4.2 Similarity Solutions

Consider (30) to be scaled with constants

h = atµH (ρ) , Γ = btνG (ρ) , where ρ =
x

Dtβ
, (40)

which lets us bring in the initial mass of the fluid and incorporate the initial surfactant
mass into the similarity solutions. Substituting in the exponents found in (35), (40)
becomes

h (x, t) = aH (ρ) , Γ (x, t) = bt−
1

2λ+1G (ρ) , ρ =
x

(Dt)
1

2λ+1

. (41)
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Substituting (41) into (17a) and (17b) yields

− 1

2λ+ 1
aρH ′ − a2

D
1
3

(
b

D
1
3

)λ(
H2

2
(−G′)λ

)′
= 0,

− 1

2λ+ 1
bG− 1

2λ+ 1
bρH ′ − ab

D
1
3

(
b

D
1
3

)λ (
HG (−G′)λ

)′
= 0.

We relate our scaling coefficients in both equations to find the same relationship,

bλ =
D

λ+1
3

a
.

The initial condition (18a) implies a = 1. Thus, bλ = D
λ+1
3 , where D is determined

by a relation of the conservation of the mass of the surfactant∫ 1

0

Γ0 dξ =

∫ x0(t)

0

Γ dx.

With the initial condition (18b), we find

D =

(
2 (2λ+ 1)

(
4

3

)λ) 3λ(2λ+1)

2λ2+6λ+1

.

Our explicit solutions are

h (ρ, t) = 2ρ, (43a)

Γ (ρ, t) =

(2 (2λ+ 1)

(
4

3

)λ) 3λ(2λ+1)

2λ2+6λ+1


λ+1
3λ (

1

2 (2λ+ 1)

) 1
λ

(1− ρ) t−
1

2λ+1 . (43b)

The explicit similarity solutions are plotted in Figure 5, Figure 6, and Figure 7 for
λ = 0.5, λ = 1.0, and λ = 1.5 respectively. Setting λ = 1 again returns the similarity
solutions back to the Newtonian case, which are the same explicit solutions found in
[10].

Another interesting note is that the similarity solution for the height profile will be
the same for any value of λ, whereas the similarity solution for the surfactant profile is
dependent on λ and accordingly varies for fluids with differing values of λ.

5 Discussion

We conduct a numerical analysis for our system of nonlinear equations for thin film
with surfactant, (17), which ignores the physical effects of gravity, capillarity, and sur-
face diffusion. Although incorporating these physical elements would provide a more
comprehensive picture, they prevent us from finding similarity solutions. Additionally,
we could have employed axi-symmetric coordinates for the entirety of this paper; how-
ever, an analogous argument can be made for this coordinate system.

While we were able to determine similarity scalings for the outer region of our solu-
tions, finding a general case for the similarity scalings at the inner region of the height
and surfactant profiles have proved to be more difficult due to their dependency on λ.
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Figure 5: The height profile h (ξ, t) and scaled surfactant profile t1/2Γ (ξ, t) plotted with
their similarity solutions in red for λ = 0.5 on 1000 < t < 10000 with ∆ξ = .001.

Figure 6: The height profile h (ξ, t) and scaled surfactant profile t1/3Γ (ξ, t) plotted with
their similarity solutions in red for λ = 1.0 on 1000 < t < 10000 with ∆ξ = .001.

Figure 7: The height profile h (ξ, t) and scaled surfactant profile t1/4Γ (ξ, t) plotted with
their similarity solutions in red for λ = 1.5 on 1000 < t < 10000 with ∆ξ = .001.
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