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Abstract. We provide an algorithm to approximate logarithms with k-th order con-
vergence. In addition to fast convergence, an upper bound for the error is available
within pre-defined levels.
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1. Introduction

In general, a smooth function can be approximated by its Maclaurin
series. The Maclaurin series for the natural log, one of the building
blocks for more sophisticated functions, is well-known

ln(1 + x) =
∞∑

n=1

(−1)n−1x
n

n
, −1 < x ≤ 1

Compared with the series of other fundamental functions such as ex-
ponential and trigonometrical functions, the Maclaurin series of the
natural logarithm converges slowly and is computationally costly, thus
it should be avoided. One present solution is to apply Newton’s method
to its inverse function ex since ex converges more quickly. More specif-
ically, solving y = lnx is equivalent to solving the equation ey − x = 0,
whose solution y can be approximated by

yn+1 = yn − eyn − x

eyn
. (1)

To measure the convergence speed, recall that a sequence uk converges
to the number L with order k if

lim
n→∞

|un+1 − L|
|un − L|k = µ,

for some µ > 0. It has been shown that Newton’s method can be
modified to various cubic (order 3) convergence algorithms.[3] One of
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them is as follows

yn+1 = yn − 2
eyn − x

eyn + x
. (2)

Another alternative for high precision is the formula

lnx ≈ π

2M(1, 4s )
−m ln 2, (3)

where M denotes the arithmetic-geometric mean of 1 and 4/s, and

s = x2m > 2p/2,

with m chosen so that p bits of precision is attained. See [4] for more
details.

In this paper, we will provide a new algorithm with general order k.
It converges quickly with desired accuracy and is easy to implement.
The idea is to transform ln(1 + x) to t+ ln(1 +w) such that w can be
arbitrarily small, such that the error can be upbounded by a pre-defined
level. We construct such t that satisfies the conditions, then calculate
w. The process can then be repeated recursively. The benchmark test in
Table I indicates that, with order 5 and with 5 recursions, the algorithm
conveges to a solution that is accurate to 1175 decimal place in the
worst scenario. See Section 2 for more details.

2. The Algorithm

In this section, we describe the algorithm in detail and present a bench-
mark testing result.

Without loss of generality, we shall focus on the log2 x with x > 0.
Logarithms with other bases can be calculated by the formula logab =
log2 b
log2 a

. We need the following lemma to limit the range of x.

LEMMA 2.1. For any x > 0, one can find integer m and positive
number w such that

log2 x = m± log2(1 + w), 0 ≤ w ≤ 1

2
. (4)

Proof. One can write as x = 2n + b such that 0 ≤ b < 2n with some
integer n. Let r = b

2n and we obtain

log2 x = log2 2
n(1 + r) = n+ log2(1 + r), 0 ≤ r < 1.

The proposition is proved if r ≤ 1
2 . Otherwise,12 < r < 1, so
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n+ log2(1 + r) = (n+ 1)− log2 2 + log2(1 + r)

= n+ 1− log2(
2

1 + r
)

= n+ 1− log2(1 +
1− r

1 + r
)

= m− log2(1 + r1), 0 < r1 <
1

3
.

which implies Lemma 2.1 with m = n+ 1.

Based on the Lemma 2.1, we only need calculate log2(1+ a0). For a
k-th order convergence algorithm, we aim to find a1 and t such that

log2(1 + a0) = t+ log2(1 + a1) (5)

and
0 ≤ a1 ≤ ak0. (6)

Using Equation (5), Inequality (6) is equivalent to

1 + a0
1 + ak0

≤ 2t ≤ 1 + a0

or
ln(1 + a0)− ln(1 + ak0) ≤ t ln 2 ≤ ln(1 + a0).

To find such t, observe that for a0 > 0 since

a0 − · · ·+ a2n−1
0

2n− 1
− a2n0

2n
≤ ln(1 + a0) ≤ a0 −

1

2
a20 + · · ·+ 1

2n− 1
a2n−1
0

and

ln(1 + ak0) ≥ ak0 −
a2k0
2

,

then

ln(1+ a0)− ln(1 + ak0) ≤ fn(a0) ≡ a0 − · · ·+ 1

2n− 1
a2n−1
0 − (ak0 −

a2k0
2

)

and

ln(1 + a0) ≥ gn(a0) ≡ a0 − · · ·+ a2n−1
0

2n− 1
− a2n0

2n
.

We shall choose n such that fn(a0) ≤ gn(a0) and then define t such
that

t ln 2 =
fn(a0) + gn(a0)

2
= a0 − · · ·+ a2n−1

0

2n− 1
+

1

2
(
a2k0
2

− a2n0
2n

− ak0).
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It is easy to see that inequality fn(a0) ≤ gn(a0) is equivalent to

−a2n0
2n

≥ −ak0 +
a2k0
2

or

ak0 ≥ a2n0
2n

+
a2k0
2

.

If we choose n = k, the above inequality holds since

1 ≥ ak0
2k

+
ak0
2

is true for any positive integer k if 0 ≤ a0 ≤ 1
2 . Once t is solved, we can

use the formula

a1 =
1 + a0
2t

− 1 (7)

to find a1 and the process can be repeated on log2(1+a1). If we repeat
this process n times, we have

t = t1, t2, . . . , tn.

Define

T =
n∑

i=1

ti W =
1 + a0
2T

− 1. (8)

We have
log2(1 + a0) = T + log2(1 +W ).

One can estimate log2(1+W ) = ln(1+W )/ ln 2 by using the Maclaurin
series.

ln(1+W ) ≈ W−1

2
W 2+. . .+(−1)q

1

q
W q+Eq, |Eq| <

1

q + 1
W q+1 (9)

We summarize our analysis in the following Theorem.

THEOREM 2.2. The algorithm discussed above with n recursions con-

verges with k-th order with error bound a(q+1)kn

0 which is always less
than (12)

(q+1)kn .

In the recursive algorithm, we assume that one can precisely calcu-
late 2t in equations (7) and (8). If 2t cannot be pre-computed precisely,
identity (8) can be used to avoid compounding errors in previous re-
cursions to find ti, making it possible to obtain an upper bound on the
absolute error.
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MATLAB was used to conduct a benchmark test for log2 1.5, which
is the worst case scenario for convergence (a0 = 1

2). The test results
indeed suggest a k-th order convergence speed.

For all tests, we use the Multiprecision Computing Toolbox for
MATLAB, which enables our precision to be as high as 2000 decimal
places. The error is the difference between the algorithm output and
the system function output.

Table I. Approximation Error of log2 1.5 Using the New Method

recursive steps k=2 k = 3 k = 4 k = 5

1 1.3E-01 6.3E-02 3.2E-02 1.6E-02

2 8.4E-03 1.3E-04 5.0E-07 4.8E-10

3 3.5E-05 1.1E-12 3.2E-26 1.3E-47

4 6.1E-10 6.9E-37 5.0E-103 1.8E-235

5 1.9E-19 1.7E-109 3.1E-410 9.5E-1175

6 1.8E-38 2.4E-327 4.7E-1639 0.0E+00

7 1.6 E-76 6.6E-981 0.0E+00 0.0E+00

8 1.2 E-152 0.0E+00 0.0E+00 0.0E+00

9 7.3E-305 0.0E+00 0.0E+00 0.0E+00

10 2.6E-609 0.0E+00 0.0E+00 0.0E+00

3. Performance comparisons

In this section, we compare the performance of the three previous
methods we mentioned in Section 1 to the new method. They are

1. Standard Newton’s method by Equation 1.

2. Modified Newton’s method by Equation 2.

3. The method using arithmetic-geometric mean by Equation 3. The
test results will be labelled as “The approximation errors of log2 1.5
by Arithmetic-Geometric Method”.

The algorithm using the arithmetic-geometric mean is a method that
demonstrates good accuracy in one step. We report the test results for
log2(1.5) with different m values and different levels of convergence
for arithmetic-geometric mean. The results are shown in Table II. On
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MATLAB, the best accuracy is achieved at m = 100 with 29 deci-
mal place. In summary, the high-speed algorithm is useful for one-step
calculation, but it limited to around 30 decimal places.

It is well known that standard Newton’s method and modified New-
ton’s method have quadratic and cubic convergence. Our tests confirm
that the new method converges at a higher order than the standard
Newton’s and modified Newton’s method.

4. Time Complexity

From the error bound estimation in Theorem 2.2, it is easy to see
that we need at most logk(

m log2 10
q+1 ) recursions if m-digit precision is

required, where k is the order of convergence and q is the number of
terms in the Taylor expansion of Equation (9).

Each recursion needs c1k arithmetic operations if we ignore the cost
for 2t, and the Taylor expansion of Equation (9) needs c2q+logk

m log2 10
q+1

arithmetic operations, where c1 and c2 are absolute constants. The
number of steps required by the new algorithm is

c1k logk(
m log2 10

q + 1
) + c2q.

Therefore the time complexity for the algorithm is O(k logk m), which
outperforms the time complexity for Newton’s method when k is large.
The time complexity of Newton’s method is O(log(m)Q(m)), where

Q(m) is the cost of calculating f(x)
f ′(x) .

Note that the time complexity of Newton’s method is only clear if a
good initial approximation is known. The new algorithm is not bound
by any constraints.

5. Conclusion

We provide an algorithm with a higher order convergence than New-
ton’s method. The algorithm converges at order k and has a controlled
error bound. We expect that the advantages of the new algorithm to
be more significant when extreme accuracy is required.
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Table II. The approximation errors of log2 1.5 by Arithmetic-Geometric Method(refer
to Equation 3)

m-value

ErrorBoundofAGM 8 10 15 25 30

1.00E − 10 −3.8719 −4.9688 −7.7897 −13.578 −16.5066

1.00E − 30 −3.8719 −4.9688 −7.7897 −13.578 −16.5066

1.00E − 50 −3.8719 −4.9688 −7.7897 −13.578 −16.5066

1.00E − 100 −3.8719 −4.9688 −7.7897 −13.578 −16.5066

m-value

ErrorBoundofAGM 50 100 200 300 500

1.00E − 10 −28.3908 −29.0317 −28.8238 −18.1456 −22.1571

1.00E − 30 −28.3908 −29.0317 −28.8238 −18.1456 −22.1571

1.00E − 50 −28.3908 −29.0317 −28.8238 −18.1456 −22.1571

1.00E − 100 −28.3908 −29.0317 −28.8238 −18.1456 −22.1571
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