
Modeling the Effects of Malaria Preventative Measures

Monroe P. Griffin
Wofford College

griffinmp@email.wofford.edu

Advisor: Dr. Anne J. Catlla
Mathematics Department

Wofford College

catllaaj@wofford.edu

Abstract

Malaria is a serious and sometimes fatal epidemic affecting nearly half of the world’s popula-
tion and is the 5th leading cause of death by infectious disease world-wide. There are currently
two recommended methods for prevention and eradication of the disease: insecticide-treated
mosquito nets (ITNs) and indoor residual spraying (IRS), but efficacies and compliance vary
from region to region. In this project, we look at the effects of ITNs and IRS as methods for
eradication of malaria. To compare these methods, we develop a differential equation model and
apply the next generation matrix method to determine the basic reproductive number. The dif-
ferential equation model builds on classical SIR epidemiological models, with added constraints
for the two preventative measures. Analysis shows that the effects of ITNs and IRS can help
eradicate the disease. We find that the effect of ITNs is significantly greater than the effect
of IRS. We conclude that the combination of compliance and efficacy for ITNs needs to be at
least 61% and that there is no such percentage for IRS alone that will eradicate the disease.
At a minimum, in combination, compliance and efficacy for ITNs needs to be at least 60% and
compliance and efficacy for IRS needs to be at least 60%.

1 Introduction

Malaria is a serious and sometimes fatal epidemic affecting nearly half of the world’s population.
World-wide, malaria is the 5th leading cause of death from infectious diseases, but in Africa it is
the 2nd leading cause [7]. In the United States, about 1500 new cases of malaria occur each year,
mainly in travelers or immigrants [7]. In 2010, the World Health Organization (WHO) estimated
149 - 274 million cases of malaria occurred, with approximately 655, 000 deaths [12].

Malaria is a parasitic disease transmitted by the bite of an infected mosquito or, more infre-
quently, by blood transfusion (surgery, needle sharing, birth) [7]. There are 4 different species that
cause malaria in humans: Plasmodium falciparum, P. vivax, P. ovale, P. malariae [7]. Of the four,
P. falciparum and P. vivax are the most common while P. falciparum is the most deadly [12]. In
humans, the parasites multiply in the liver before infecting the red blood cells. Once the parasites
reach the blood system, symptoms such as high fever, headache and vomiting occur, usually within
10 to 15 days after the mosquito bite [7, 12]. Also, once the parasites reach the human blood cells,
the female Anopheles mosquito can become infected by taking a blood meal. It is important to note
that the Anopheles mosquito feeds between dusk and dawn, often inside. Other than the preferred
vertebrate human host, the parasites can survive in the female Anopheles mosquito, in fact, most
of the parasites’ growth cycle occurs in the mosquito [7].
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Agencies have been working on eradication and prevention of malaria since the 1950s [7]. How-
ever, over the years, mosquitoes and parasites have developed resistance to different insecticides and
drugs, respectively [7]. Currently, the WHO recommends the use of insecticide-treated mosquito
nets (ITNs) and indoor spraying with residual insecticides (IRS) as forms of malaria control [12].
ITNs are simply nets with small aperatures that are treated with approved insecticides that are
non-toxic to humans and other animals. With ITNs, re-treatment of the net must occur after a
short period of time (6 − 12 months). Over time, the insecticides degrade due to exposure to the
sun and through washing [7]. Longer lasting insecticides are in development and are known as Long
Lasting Insecticide-treated Nets (LLINs). ITNs are placed over beds to protect the users and are
commonly known as insecticide-treated bed nets [7]. IRS makes use of the fact that mosquitoes tend
to stay inside houses after taking their blood meal. As a result, approved insecticides are sprayed
and applied to the walls of residencies to kill mosquitoes. IRS has become a costly endeavor because
of the expensive non-toxic insecticides [7].

ITNs and IRS are methods of prevention whereas antimalarial drugs are used in treatment of the
disease. Antimalarial drugs are also recommended in combination to help prevent infection. Due to
the resistance of the parasite to some medications in some areas, each country has a recommended
list of antimalarial medications [7]. It is also recommended that antimalarial medications be used
in combination with artemisinin derivatives, creating another class of effective antimalarial drugs.
The combinations with artemisinin derivatives are called artemisinin-based combination therapies
(ACTs), and are the most effective treatment for malaria, with a 95% cure rate against the falci-
parum strain of malaria, the most common strain [12]. Although there are methods for treatment
of the disease, malaria is still a deadly disease because of the parasites’ developed resistance to a
number of malaria medications and because of the severe symptoms that develop quickly in humans
[12].

To address biological issues and questions such as how to eradicate malaria, we employ math-
ematical modeling. For this project, we start from the classical epidemiological ODE Susceptible
- Infected - Recovered (SIR) model. In the SIR model, different fractions of the population are
classified as Susceptible to infection, S(t), Infected, I(t), or Recovered from infection, R(t), where
t represents time. The size of each group can change based on different parameters and the cur-
rent values of S(t), I(t), and R(t), but the total population will remain constant. The SIR model
is a simple model useful for modeling diseases such as chicken pox and influenza [15]. Modern
epidemiology ODE models are based on these same SIR concepts of populations flowing between
states [1, 3, 5, 11, 13]. For our model, we will apply the basic concepts of the SIR model to the
vector-borne disease malaria. The term vector refers to the living organism that transmits a disease
from one host to another, in our case, the mosquito.

This project focuses on the effectiveness of malaria preventative measures, specifically ITNs and
IRS. We focus on these methods because their functions and effects are well known, and they are
the only purely preventative measures recommended for possible malaria eradication. In section 2,
we describe the derivation of our model from the classic SIR model and show the model solution,
using the numerical computing program MATLAB. In section 3, we present the idea of the basic
reproductive number and describe how we determine it for malaria. In section 4, we describe the
results from our model and form a conclusion. And, finally, in section 5 we provide a summary.
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2 The Model

In this section, we describe the formulation of our model and describe the solution. The solution
is determined numerically using MATLAB to solve the system of equations.

2.1 Model Formation

We develop a differential equation model, which is useful in studying the overall system because
we can look at the flow dynamics of individuals as well as the number of people at different stages
of the disease cycle. In fact, we can determine the equilibrium state, the state in which the overall
system does not change, which can be either endemic or not, to aid in analysis of the eradication
of the disease.

For our model, we augment the basic SIR model to include preventative measures as seen
previously by other researchers [3, 4, 5]. We include the effects of ITNs and IRS preventative
measures based on the fact that both methods are recommended for the prevention of malaria
by the WHO. We do not focus on other factors such as vaccination and partial immunity, since
currently, there is no approved vaccination against malaria recommended by health agencies. There
are vaccines being developed, but none have finished clinical testing to be approved for use [7].

In our model, the human and mosquito populations are functions of time, t. To distinguish
between the human population and the mosquito population, we use the subscripts h and m,
respectively. The human population was developed using a Susceptible - Exposed - Infected -
Recovered - Susceptible (SEIRS) model, adapted from the classical SIR model. The different
populations are denoted as follows: susceptible humans, Sh, exposed humans, Eh, infected humans,
Ih, and recovered humans, Rh. Note that the entire human population can be expressed as the
sum of these subpopulations: Nh = Sh + Eh + Ih + Rh. The “Exposed” category models the
incubation period before a human becomes infectious, contrasting with the “Infected” category in
which individuals are infected and can infect susceptible mosquitoes. In addition, the “Recovered”
category is included as a way to deal with the issue of partial immunity after recovering from
infection, a simplifying assumption of the model. Biological evidence exists for partial immunity
of humans over long periods of exposure and treatment for malaria [4, 5, 7]. We allow for humans,
after being treated for malaria, to have a partial immunity to the parasite for some time after
treatment of the disease results in recovery. We do not focus on the long-term aspects of partial
immunity that can develop over prolonged exposure to the disease.

Similarly, the mosquito population was developed using a Susceptible - Exposed - Infected
(SEI) model. The different populations are similarly denoted as follows: susceptible mosquitoes,
Sm, exposed mosquitoes, Em, and infected mosquitoes, Im. Also, note that the entire mosquito
population can be expressed as the sum of these subpopulations: Nm = Sm + Em + Im. Since the
lifespan of a mosquito is relatively small compared to the lifespan of humans, our model assumes
that the mosquitoes will die from the infection. There is some data to suggest that the malaria
parasite shortens the mosquito’s lifespan as well, confirming our choice of the SEI model for the
mosquito population [3, 5, 9].

As time progresses, individuals move from one class to another at different rates based on the
current state of the infection. In our model, humans and mosquitoes enter the populations at
specific birth rates, Λh and Λm, respectively; die from natural causes at specific rates, µh and µm,
respectively; and die from disease induced death at specific rates, αh and αm, respectively. We
assume, in a similar manner as Esteva et al., that vertical transmission is not allowed, meaning
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Figure 1: This schematic diagram shows the interactions between the human and mosquito pop-
ulations as well as the flow of individuals between classes in the compartmental model. The solid
arrows show the movement of individuals from one class to another. The dotted arrows show
the interactions, through vector transmission, between the human and mosquito populations. The
constants used in the differential equations appear with the associated arrow in the diagram. In
addition, birth rates (Λh and Λm), natural death rates (µh and µm), and disease induced death
rates (αh and αm) are included before and after their respective arrows.

that individuals (i.e. new borns) enter the susceptible population instead of entering other classes
(exposed, infected, or recovered) [11]. We allow individuals to move from the susceptible human
population (Sh) to the exposed human population at a rate proportional to both the size of the
susceptible human population and the infected mosquito population and inversely proportional
to the total human population, aShIm/Nh. The inversely proportional term is used to make the
model parameters independent of Nh. This follows from the true-mass-action assumption, which
provides that Nh does not need to remain constant if there are a small number of cases of infection
compared to the total population [8]. Members of the exposed class (Eh) move to the infected
humans class at a rate proportional to the number of individuals in the exposed human population,
cEh. Individuals move from the infected human population (Ih) at a rate proportional to the size of
the infected human populations, dIh. Lastly, individuals move from the recovered human class (Rh)
to the susceptible human population at a rate proportional to the recovered human population size,
bRh. For the mosquito populations, mosquitoes move from the susceptible mosquito population
(Sm) to the exposed mosquito population at a rate proportional to both the size of the susceptible
mosquito population and the size of the infected human population and inversely proportional
to total mosquito population, fSmIh/Nm. This term also uses the true-mass-action assumption.
Finally, mosquitoes move from the exposed mosquito population (Em) at a rate proportional to
the number of individuals in the exposed mosquito population, gEm.

In addition to considering the various stages of the disease, we model the effects of malaria
preventative measures. The symbols ITN and IRS are used respectively for ITN and IRS pro-

211



tection. Incorporated in each parameter is the efficacy of the method and the percent compliance
of the method (ITN = ITNeff · ITNcomp and IRS = IRSeff · IRScomp). In the literature, there
are no common values accepted for the efficacies of ITNs or IRS. Comprehensive studies of these
methods conclude wide-ranging values for the efficacies because the studies were conducted over
different time spans and in different regions [2, 6]. In order to incorporate these two prevention
methods into the model, we look closely at how each method is employed and the effect it has on
the spread of the disease. The effect of using ITNs is two-fold: (1) ITNs can reduce the number of
bites from mosquitoes as they physically provide a barrier between the mosquito and the human,
and (2) ITNs reduce the population of the mosquitoes by killing them after they land on the treated
net. In contrast, the effect of IRS is the killing of the mosquito population as they interact with the
sprayed walls; however, IRS is not able to provide a mechanism for preventing the mosquito bites
that spread the disease. The effects of ITNs are incorporated in the rates of transmission from the
susceptible human class to the exposed human class and from the susceptible mosquito class to the
exposed mosquito class with a parameter measured as a percent, (1 − ITN), and also a separate
death rate in each of the mosquito subpopulations: Sm, Em, and Im. When ITN = 1, there is no
movement from the susceptible human class to the exposed human class as well as no movement
from the susceptible mosquito class to the exposed mosquito class. When ITN = 0, the nets have
no effect and the disease spreads as such. The effect of IRS is incorporated solely in the death of
the mosquito populations: Sm, Em, and Im. The parameters h and j are respective rates for the
removal of mosquitoes from the different classes associated with ITNs and IRS; they have units of
per day (day−1). The values for ITN and IRS range from 0 to 1 inclusive as we increment each
constant to account for a wide range of efficacies and compliance applicable.

A schematic depiction of the model is given in Figure 1. Our assumptions, as discussed, lead
to the development of the following differential equations:

dSh
dt

= −a ImSh(1− ITN)

Sh + Eh + Ih +Rh
+ bRh + Λh − µhSh (1a)

dEh
dt

= a
ImSh(1− ITN)

Sh + Eh + Ih +Rh
− cEh − µhEh (1b)

dIh
dt

= cEh − dIh − µhIh − αhIh (1c)

dRh
dt

= dIh − bRh − µhRh (1d)

dSm
dt

= −f IhSm(1− ITN)

Sm + Em + Im
+ Λm − µmSm − h · ITN · Sm − j · IRS · Sm (1e)

dEm
dt

= f
IhSm(1− ITN)

Sm + Em + Im
− gEm − µmEm − h · ITN · Em − j · IRS · Em (1f)

dIm
dt

= gEm − µmIm − αmIm − h · ITN · Im − j · IRS · Im. (1g)

2.2 Model Solution

We employ numerical methods to solve Equations (1), using the parameter values in Table 1. These
simulations are performed using MATLAB’s built-in ode45 function. The ode45 function evaluates
the differential equations using an explicit 4th order Runge-Kutta method for solving ODEs. In
these simulations, initial population sizes are chosen based on populations used in similar studies
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Description Symbol Value Source

Human Infection rate a .25I Estimated
Human Re-susceptibility rate b .04II Estimated
1/(latent period for humans) c 1/14 [3]
Human Recovery rate d .205III Estimated
Mosquito infection rate f .415IV Estimated
1/(latent period for mosquitoes) g 1/12 [3]
Parameter for ITN rate h 1/365V Estimated
Parameter for IRS rate j 1/365V Estimated
Human birth rate Λh .028 [3]
Natural human death rate µh .0000391 [3]
Human death rate due to the disease αh .0004 [3]
Mosquito birth rate Λm 6V I Estimated
Natural mosquito death rate µm .04 [3]
Mosquito death rate due to disease αm .01 [3]
I product of human transmission probability (.5) and biting rate (.5), from [3]

II product of recovery rate (.005) and modified recovery rate (8.04), from [3]

III sum of treatment rate (.2) and recovery rate (.005), from [3]

IV product of mosquito transmission probability (.83) and biting rate (.5), from [3]

V division by 365 allows for the rate to have the correct units of days−1

V I mosquito birth rate, 12 eggs/day/mosquito, where half are assumed to be male and the other half female

Table 1: This table gives the constants and parameters used in the model.

[4, 3, 5]. The initial conditions used are Sh = 300, Eh = 0, Ih = 1, Rh = 0, Sm = 300, Em = 0, and
Im = 0. Note that these initial populations are nondimensional. We find that the initial condition
does not affect our analysis. We start with high susceptible human and mosquito populations
compared to the other states. In addition, we must have a source of initial infection, which we
represent with the initial condition of Ih = 1.

Figure 2 presents typical solution plots for the human population and the mosquito population.
As the individuals leave one class for another, the curves change accordingly. Once the curves
level off, we stop the simulation as the populations reached equilibrium. Overall, without any
intervention strategy (ITN = 0 and IRS = 0), the final infected human and exposed human
populations are non-zero; however, they are smaller than the non-infectious states (susceptible and
recovered classes). Since the populations are non-zero, malaria has not been eradicated at the
equilibrium state. For the mosquito classes, notice that the equilibrium state contains almost an
equal number of infected mosquitoes as susceptible mosquitoes. It is important to note that, here,
the built-in MATLAB solver will find a stable solution, which may have a dependence on initial
conditions, if the system has more than one steady state. However, we later confirm with our
analysis, that there is at most one positively steady state solution, indicating that there is not a
dependence on the initial conditions chosen.

Figure 3 gives another example of plots of the populations over time, factoring in some in-
tervention strategies (ITN = .5 and IRS = .5). Unlike Figure 2, the different populations and
classes do not go to an equilibrium. In this case, with some intervention strategies, the susceptible
human population appears to continue growing although the disease has not been eradicated. This
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Figure 2: These are plots of the human population (top) and the mosquito population (bottom)
as functions of time. Note that both reach a non-zero equilibrium. This figure was created using
initial conditions from the text, using the parameter values in Table 1, ITN = 0, and IRS = 0.
The equations were solved in MATLAB using the built-in ode45 solver.
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Figure 3: These plots show the human population (top) and the mosquito population (bottom)
as a function of time. deleted statement about equilibrium. This figure was created using initial
conditions from the text, using the parameter values in Table 1, ITN = .5, and IRS = .5. The
equations were solved in MATLAB using the built-in ode45 solver.
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phenomenon is due to the fact that the mosquito population becomes so small that the birth rate
of humans overwhelms the death rate.

3 Reproductive Number

In epidemiology, the reproductive number is often used to determine the seriousness of the disease
in question. It is defined as “the expected number of secondary cases produced by a single (typical)
infection in a completely susceptible popluation.”[10] In other words, it is a measure of how fast
a disease will spread through a population. As defined, a reproductive number less than one will
cause the disease to die out; whereas, a reproductive number greater than one classifies the disease
as endemic [3].

Mathematically, there are a number of different methods to compute a reproductive number.
The most common method to determine the reproductive number of a system of differential equa-
tions is to find the dominant eigenvalue of the steady-state Jacobian matrix for the linearized
system. For a general discussion of linear stability analysis, see [14]. However, in our study, we
focus on using another type of linear analysis, the next generation method, to find the reporduc-
tive number and compare it to the results from a linear stability analysis. Details of the linear
stability analysis can be found in Appendix A. In order to determine the reproductive number for
our system, since our model does not allow for an analytic expression to be determined, we use
MATLAB to symbolically and numerically solve the system and determine the necessary eigenvalue
and reproductive numbers. See Appendices A & B for the annotated MATLAB code.

In the next generation method, we look at a smaller set of our original equations [10]. The next
generation matrix, G, is a square matrix where each element is the expected number of secondary
infections from one infected individual for each type of subpopulation. In other words, each element
is a reproductive number; however, the basic reproductive number for the disease is the dominant
eigenvalue of G. Note that the rate of new infection, F, is given by the product of G with the
rates of transfer of infection, V. So, to compute G we use G = FV−1. Mathematically, F and V
are the Jacobian matrices,

F =

[
∂Fi(xo)

∂xj

]
and V =

[
∂Vi(xo)

∂xj

]
,

where Fi are new infections, Vi is the transfer of infections from one compartment to another, and
xo is the disease-free equilibrium state [10].

To develop F and V for our model, we modify the original differential equations to reflect only
the creation of new infections or the transfer of current infections. To obtain these equations, we
narrow our focus to the classes of “infected” individuals: dEh

dt , dIhdt , dEm
dt , and dIm

dt . For the equations
later used in the F matrix, we focus on the aspects of the equations that pertain to causing new
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infections, denoted using the squiggle, X̃. These equations are given by:

dẼh
dt

= a
ImSh(1− ITN)

Sh + Eh + Ih +Rh
(2a)

dĨh
dt

= 0 (2b)

dẼm
dt

= f
IhSm(1− ITN)

Sm + Em + Im
(2c)

dĨm
dt

= 0. (2d)

Focusing on the aspects of the original equations that relate to the transfer of infection, we
develop equations later used in the V matrix. Note the sign change for the equations as we
describe the rate of infection instead of the flow of individuals. We note these equations using the
hat, X̂, and they are given by:

dÊh
dt

= cEh + µhEh (3a)

dÎh
dt

= −cEh + dIh + µhIh + αhIh (3b)

dÊm
dt

= gEm + µmEm + h · ITN · Em + j · IRS · Em (3c)

dÎm
dt

= −gEm + µmIm + αmIm + h · ITN · Im + j · IRS · Im. (3d)

To find F, we compute the Jacobian of Equations (2) evaluating at the disease-free state,
Sh = Nh, Eh = 0, Ih = 0, Rh = 0, Sm = Nm, Em = 0, and Im = 0. To find V, we compute the Ja-
cobian of Equations (3) also evaluating at the disease-free state. Afterwards, matrix multiplication
and eigenvalue calculations lead to the reproductive number. In solving for the dominant eigenvalue
of G, specific values for ITN and IRS are used. These computations are done in MATLAB using
the appropriate built-in functions, as described in Appendices A & B.

4 Results and Discussion

In our analysis of the preventative measures of malaria, we ran a number of simulations changing
the amount of the two different preventative measure strategies, ITNs and IRS, ranging from 0 to 1
(ITN ∈ [0, 1] and IRS ∈ [0, 1]). In total, 121 different combinations were used, using increments
of .1 for each strategy. For each combination, the basic reproductive number was found using the
next generation method as described in Section 3. Figure 4 displays the final data graphically,
plotting the reproductive number as a function of ITN and IRS. In general, we see that as the
use of preventative measures increases, the reproductive number gets closer to 1, eventually falling
below that critical value. We note that this value occurs for some value of ITN ≈ .60.

Figure 5a shows the effect of the reproductive number as the value of ITN increases, without
the effect of IRS (IRS = 0), using the next generation method. As the value of ITN increases,
the reproductive number decreases eventually below 1. From the plot, we see that a moderately

217



Figure 4: This plot shows the basic reproductive number as a function of ITN and IRS and was
created using the next generation method data. Notice that the reproductive number drops below
one near ITN = .60; this occurs near the border of the cyan and green shaded regions. This plot
was made in MATLAB using the surf built-in function.

high value for ITN is necessary to cause the disease to go from endemic to dying out. We estimate
the critical value for ITN to be .61, by looking closely at the region ITN ∈ [.55, .65]. Figure 5b
shows the trend of the reproductive number as ITN increments between .55 and .65. This value for
ITN means that it is possible to eradicate the disease with only using ITNs, but it would require
a moderately large compliance as well as a moderately large efficacy for ITNs to do so. We need to
remember that the variable ITN represents the combination of compliance and efficacy of ITNs.
In fact, there is a limited range of combinations that would allow for the combination of compliance
and efficacy to be at least 61%. In the literature, we do not see values for efficacy of ITNs near
that range; they are consistently below 61% [6].

In Figure 6, we see the effects of IRS without any effects from ITNs (ITN = 0). As the value of
IRS increases, the reproductive number does decrease; however, not much across the whole interval
IRS ∈ [0, 1]. In fact, with ITN = 0, we see that the reproductive number decreases by .0966, from
2.6117 to 2.5151. The effect of IRS is not enough alone to cause the reproductive number to go
below 1, causing the disease to die out.

However, IRS can be somewhat effective in combination with ITNs. When combined, the
reproductive number falls below one when ITN = .60 and IRS = .60. In combination, any
increase in these parameters above these critical points will cause the basic reproductive number
to continue decreasing below one, helping to eradicate the disease.
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(a) (b)

Figure 5: These plots show the effect of ITN on the reproductive number. They are plots of
the basic reproductive number as a function of ITN and were created using the next generation
method data where IRS = 0. Plot (a) plots the reproductive number for all values of ITN. Notice
that the reproductive number drops below one for ITN ∈ [.55, .65]. Plot (b) plots the reproductive
number in the region ITN ∈ [.55, .65]. Notice that the reproductive number drops below one for
ITN ∈ [.60, .61]. These plots were made in MATLAB using the plot built-in function.

Figure 6: This plot shows the effect of IRS on the reproductive number. It is a plot of the basic
reproductive number as a function of IRS and was created using the next generation method data
where ITN = 0. Notice that the reproductive number does not change significantly over the whole
range, changing from 2.6117 to 2.5151. This plot was made in MATLAB using the plot built-in
function.
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5 Summary

In this project, we created a system of differential equations to model the spread of malaria,
including the effects of two major preventative measures: ITNs and IRS. Our equations work
off the assumption that individuals move between classes, different for the human and mosquito
populations, depending on the size of those classes. In our model, the two populations interact via
the bite from the malaria vector (mosquito). We determine the basic reproductive number of the
disease by using the next generation method, using numerical methods and techniques to show how
the reproductive number varies with ITN and IRS.

From the simulation data, we see that both prevention strategies are able to reduce the re-
productive number for malaria. However, the effect of ITNs is much greater than the effect of
IRS. In combination, use of both ITNs and IRS, the reproductive number is lowered more than
only using one of the strategies. Using solely ITNs, the reproductive number drops below zero
at a value of .61. That number is slightly lowered with the effects of IRS. Although the disease
can be eradicated with ITNs and IRS, there needs to be a high combination of compliance among
users of the strategies and high efficacies of each strategy. At some point, if the efficacies are not
high enough, even 100% compliance will not cause IRS and ITN to be large enough to make the
reproductive number to be below one.

With this project, there are areas for future work. There are other epidemiological models that
could obtain the basic reproductive number, but use a different approach. Those methods include
network models and cellular automata models. It would be helpful to compare the results of those
models with the results obtained with our differential equation model. Other suggestions would be
to obtain precise efficacies for the different strategies. In the literature, an accepted efficacy value
for either method does not currently exist, hence our reasoning for sampling all possible values in
this study. However, using the correct efficacies, when determined, compliance can be calculated
in order to help areas try to eradicate malaria. As a next step, a sensitivity analysis of this model
could be useful to understand the effect of small perturbations in these values as agencies work to
narrow down correct efficacies. In addition, there are other preventative measures in development,
such as ACTs and vaccinations, that could be added to the model as one more aspect in trying to
identify the reproductive number and aid in fighting this disease.
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A Linear Stability Analysis

A.1 Discussion and Results

In order to find the transition point where the disease goes from endemic to dying out, we conduct
a linear stability analysis. We start by inputing the differential equations and constants as symbolic
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Figure 7: These plots show the dominant eigenvalue as a function of ITN and IRS and were created
using the linear stability analysis data. It is important to note that not all ITN/IRS combinations
yield a dominant eigenvalue due to the lack of an equilibrium solution. Plot (a) shows the data
as a scatter plot while Plot (b) shows the data with an interpolated fit. Notice that the dominant
eigenvalue drops below zero for ITN ≈ .6; this region is blue shaded. Both plots were made in
MATLAB: Plot (a) was made using the scatter3 built-in function and Plot (b) was made using
the griddata, surf, and plot3 built-in functions.

equations and variables. Using MATLAB’s built-in solve function, we solve the system of equa-
tions, each set to zero, to find the fixed points of the system. In order to continue the analysis, we
convert the matrix containing the symbolic fixed points to a numeric fixed point matrix. Next, we
must eliminate all of the negative and complex fixed points. Physically, a population can never be
negative, and similarly, populations with imaginary parts are physically impossible. After finding
the positive real fixed points, we substitute each of them individually into the Jacobian matrix.
Using the built-in function jacobian, MATLAB symbolically finds the Jacobian matrix for the
system. Subsequently, we substitute the fixed points individually into the Jacobian before finding
the eigenvalues. The built-in eig function can be used to find the eigenvalues of a given matrix. At
this point in the analysis, we are only concerned with the real parts of the eigenvalue and removing
the complex part does not adversely affect the analysis. After we obtain only positive and real
eigenvalues for the system, we must find the dominant eigenvalue using the max function. Because
this codes runs slowly, we also used an alternative approach to find the actual basic reproductive
number.

Using the results of the linear stability analysis, we find that the dominant eigenvalue falls
below zero for the same value of ITN and IRS as the next generation method analysis. Figure ??
gives the overall trend of the eigenvalue for different values of ITN and IRS. From this plot we
initially see the effect of both ITN and IRS. We note that for some critical value for ITN , the
eigenvalue falls below zero (ITN ≈ .6). This effect of the eigenvalue falling below zero translates
to the reproductive number falling below one.
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A.2 MATLAB Code

The following MATLAB code automates the linear stability analysis on the ODE model. This
code frequently switches between symbolic, numerical, and decimal variables to accommodate the
requirements of the different functions and processes used. The author would like to point out
the use of clearvars -except as a method of clearing all variables except those that follow the
command, which is necessary for our overall counter and the variables used in saving. The vpa

function converts variables from symbolic or numeric to a decimal form. It is important to note
that this code allows for data to be saved during the simulation in case the program is accidentally
terminated in the middle of the execution. Please note that this code runs very slowly. We also
note that not all ITN/IRS combinations run with this code. For the situations where the system
does not reach an equilibrium, the solve command fails. In another function, we implemented the
try and catch command to deal with the failed attempts. The details of that code are not given
here.

1 %% This code is useful for finding the dominant eigenvalue of the linearized system
2 %% We use it in the first part of the reproductive number analysis.
3

4 %% Note: This simulation runs slowly because of lines 66 & 67. The solve function
5 %% runs slowly in this situation and may fail if an equilibrium solution
6 %% cannot be determined.
7

8 clear all
9 format long

10 tInitial = tic; % Used to determine run time of simulation
11

12 % ITN values are in the first row, IRS values are in the second row, this segment
13 %% is used for running the whole simulation for different values of ITN and IRS.
14 IRSITNmat = [zeros(1,11) ones(1,11)*.1 ones(1,11)*.2 ones(1,11)*.3 ones(1,11)*.4 ...
15 ones(1,11)*.5 ones(1,11)*.6 ones(1,11)*.7 ones(1,11)*.8 ones(1,11)*.9 ...
16 ones(1,11);0:.1:1 0:.1:1 0:.1:1 0:.1:1 0:.1:1 0:.1:1 0:.1:1 0:.1:1 0:.1:1 ...
17 0:.1:1 0:.1:1];
18

19 % Used in the saving process
20 IRStoSave = []; ITNtoSave = []; scriptRstoSave = []; ShtoSave = [];EhtoSave = [];...
21 IhtoSave = []; RhtoSave = []; SmtoSave = []; EmtoSave = []; ImtoSave = [];
22

23 %% Each run of the for loop determines the dominant eigenvalue of system,
24 %% using the specified ITN and IRS values
25 for overall = 1:size(IRSITNmat,2)
26 clearvars −except overall IRSITNmat tInitial IRStoSave ITNtoSave ...
27 scriptRstoSave ShtoSave EhtoSave IhtoSave RhtoSave SmtoSave ...
28 EmtoSave ImtoSave %% Clears all variable except the save matricies
29

30 %% Define functions
31 syms Sh Eh Ih Rh Sm Em Im
32 %% Constants
33 a = .25;
34 b = .04;
35 c = 1/14;
36 d = .205;
37 f = .83*.5;
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38 g = 1/12;
39 h = 1/365;
40 j = 1/365;
41 Lambdah = .028;
42 muh = .0000391;
43 alphah = .0004;
44 Lambdam = 6;
45 mum = .04;
46 alpham = .01;
47 % Changes ITN and IRS value with each run of the for loop
48 ITN = IRSITNmat(1,overall); % ITN values are stored in the first row
49 IRS = IRSITNmat(2,overall); % IRS values are stores in the second row
50

51 %% Equations
52 Shdot = −a*Im*Sh*(1−ITN)/(Sh+Eh+Ih+Rh)+b*Rh+Lambdah−muh*Sh;
53 Ehdot = a*Im*Sh*(1−ITN)/(Sh+Eh+Ih+Rh)−c*Eh−muh*Eh;
54 Ihdot = c*Eh−d*Ih−muh*Ih−alphah*Ih;
55 Rhdot = d*Ih−b*Rh−muh*Rh;
56 Smdot = −f*Ih*Sm*(1−ITN)/(Sm+Em+Im)+Lambdam−mum*Sm−h*ITN*Sm−j*IRS*Sm;
57 Emdot = f*Ih*Sm*(1−ITN)/(Sm+Em+Im)−g*Em−mum*Em−h*ITN*Em−j*IRS*Em;
58 Imdot = g*Em−mum*Im−alpham*Im−h*ITN*Im−j*IRS*Im;
59

60 %% Find fixed points −− Solves the system of equations. The default is
61 % setting the equations equal to zero
62 [Shstar, Ehstar, Ihstar, Rhstar, Smstar, Emstar, Imstar] = ...
63 solve(Shdot, Ehdot, Ihdot, Rhdot, Smdot, Emdot, Imdot);
64 W = vpa([Shstar, Ehstar, Ihstar, Rhstar, Smstar, Emstar, Imstar]);
65 % Assigns the correct values for later determining the fixed points.
66 % Based on how the solve function outputs data alphabetically
67 Shstar = W(:,6); Ehstar = W(:,1); Ihstar = W(:,3); Rhstar = W(:,5); ...
68 Smstar = W(:,7); Emstar = W(:,2); Imstar = W(:,4);
69

70 %% Creates fixedPoints matrix including all POSSIBLE fixed points not
71 %% just physically meaningful fixed points
72 fixedPoints = [];
73 for fp=1:length(Shstar) % uses length of Shstar, all have same length
74 % Note: weird 'z' value, unsure what it is. Could not find answer
75 % in the literature. Apparently equals 122
76 if double(findsym([Shstar(fp) Ehstar(fp) Ihstar(fp)...
77 Rhstar(fp) Smstar(fp) Emstar(fp) Imstar(fp)])) == 122
78 continue % Skips over the fixed points with that unknown 'z'
79 end
80 % Creates the fixedPoints matrix
81 fixedPoints(end + 1, :) = [Shstar(fp) Ehstar(fp) Ihstar(fp)...
82 Rhstar(fp) Smstar(fp) Emstar(fp) Imstar(fp)];
83 end
84 fixedPoints = double(fixedPoints); % To work with removing fixed points
85

86 delete = 0;
87 %% Goes backwards because rows will be removed and will cause an error
88 %% if they are removed from the top first
89 for i = size(fixedPoints,1):−1:1
90 for j = 1:size(fixedPoints,2)
91 % removes all negative and imaginary fixed points
92 if (fixedPoints(i,j) < 0 ) | | (imag(fixedPoints(i,j)) ˜=0)
93 delete = 1;
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94 end
95 end
96 if delete == 1
97 %% deletes the row/fixed point once it has cycled through
98 %% all the columns in a row
99 fixedPoints(i,:) = [];

100 delete = 0;
101 end
102 end
103

104 %% This section of code removes fixed points that are trivial, in other words,
105 %% either the human population OR the mosquito population goes to zero
106 delete1 = 1;
107 delete2 = 1;
108 for i = size(fixedPoints,1):−1:1
109 for j = 1:4
110 fixedPoints(i,j);
111 if fixedPoints(i,j) > 0
112 delete1 = 0;
113 end
114 delete1;
115 end
116 for j = 5:7
117 if fixedPoints(i,j) > 0
118 delete2 = 0;
119 end
120 end
121 %% fixed point has to have values in both Human AND mosquito
122 %% sections not to be deleted
123 if delete1 == 1 | | delete2 == 1
124 fixedPoints(i,:) = [];
125 end
126 delete1 = 1;
127 delete2 = 1;
128 end
129

130 %% To help with evaluation of code to make sure all possible solutions are
131 %% determined. The rest of the code might assume only one fixed point in the
132 %% matrix. We wanted to know if there was more than one to help with this fact
133 if size(fixedPoints, 1) > 1
134 disp('FIXEDPOINTS MATRIX TOO LARGE')
135 end
136

137 %% Compute the Jacobian
138 J = jacobian([Shdot, Ehdot, Ihdot, Rhdot, Smdot, Emdot, Imdot],...
139 [Sh Eh Ih Rh Sm Em Im]);
140

141 for k=1:size(fixedPoints,1)
142 %% Evaluates the jacobian for the fixed point by substitution
143 Jeval = subs(J, [Sh Eh Ih Rh Sm Em Im], [fixedPoints(k,1), ...
144 fixedPoints(k,2), fixedPoints(k,3), fixedPoints(k,4), ...
145 fixedPoints(k,5), fixedPoints(k,6), fixedPoints(k,7)]);
146 eigens = eig(Jeval); % computest the eigenvalues
147 eigens = real(eigens); % replaces complex number with its real part
148 scriptR = max(eigens); % determines the dominant eigenvalue
149
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150 %% displayes the values for ITN, IRS and the dominant eigenvalue
151 disp([num2str(overall), ':', ' ITN = ', num2str(ITN), ', IRS = ', ...
152 num2str(IRS), ' >>>> dominant eigenvalue: ', num2str(scriptR)])
153 %% Useful in the saving process
154 IRStoSave(end + 1) = IRS;
155 ITNtoSave(end + 1) = ITN;
156 scriptRstoSave(end + 1) = scriptR;
157 ShtoSave(end + 1) = fixedPoints(k,1);
158 EhtoSave(end + 1) = fixedPoints(k,2);
159 IhtoSave(end + 1) = fixedPoints(k,3);
160 RhtoSave(end + 1) = fixedPoints(k,4);
161 SmtoSave(end + 1) = fixedPoints(k,5);
162 EmtoSave(end + 1) = fixedPoints(k,6);
163 ImtoSave(end + 1) = fixedPoints(k,7);
164 %% Saves data to file for later use
165 save('Analysis.mat', 'IRStoSave', 'ITNtoSave', 'scriptRstoSave', 'ShtoSave',...
166 'EhtoSave', 'IhtoSave' ,'RhtoSave', 'SmtoSave', 'EmtoSave', 'ImtoSave')
167 end
168 end % End of analysis
169 toverall = toc(tInitial); % determines overall run time of code
170 averageTime = toverall/size(IRSITNmat,2) % calculates average run time

B Next Generation Matrix Method - MATLAB Code

The following MATLAB code runs the next generation matrix method. A description of this
analysis is given in Section 3. Note that this method can be used for all of the simulations or to
just focus on a set of parameter values, because of its fast run time.

1 %% This code runs the Next Generation Matrix Method for finding the
2 %% Basic Reproductive number
3

4 clear all
5 format long
6 %%% The following matrix will run all (121) combinations
7 IRSITNmat = [zeros(1,11) ones(1,11)*.1 ones(1,11)*.2 ones(1,11)*.3 ...
8 ones(1,11)*.4 ones(1,11)*.5 ones(1,11)*.6 ones(1,11)*.7 ones(1,11)*.8 ...
9 ones(1,11)*.9 ones(1,11);0:.1:1 0:.1:1 0:.1:1 0:.1:1 0:.1:1 0:.1:1 ...

10 0:.1:1 0:.1:1 0:.1:1 0:.1:1 0:.1:1];
11 Rnaught2tosave = []; ITNtoSave = []; IRStoSave = []; %% Used for saving
12

13 for overall = 1:size(IRSITNmat,2)
14 %% Clears all variable except the save matricies
15 clearvars −except overall IRSITNmat Rnaught2tosave ITNtoSave IRStoSave
16 %% Define functions
17 syms Sh Eh Ih Rh Sm Em Im Nm Nh
18 %% Constants
19 a = .25;
20 b = .04;
21 c = 1/14;
22 d = .205;
23 f = .83*.5;
24 g = 1/12;
25 h = 1/365;
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26 j = 1/365;
27 Lambdah = .028;
28 muh = .0000391;
29 alphah = .0004;
30 Lambdam = 6;
31 mum = .04;
32 alpham = .01;
33 % Changes ITN and IRS value with each run of the for loop
34 ITN = IRSITNmat(1,overall); % ITN values are stored in the first row
35 IRS = IRSITNmat(2,overall); % IRS values are stores in the second row
36

37 %% Full Differential Equations
38 Shdot = −a*Im*Sh*(1−ITN)/(Sh+Eh+Ih+Rh)+b*Rh+Lambdah−muh*Sh;
39 Ehdot = a*Im*Sh*(1−ITN)/(Sh+Eh+Ih+Rh)−c*Eh−muh*Eh;
40 Ihdot = c*Eh−d*Ih−muh*Ih−alphah*Ih;
41 Rhdot = d*Ih−b*Rh−muh*Rh;
42 Smdot = −f*Ih*Sm*(1−ITN)/(Sm+Em+Im)+Lambdam−mum*Sm−h*ITN*Sm−j*IRS*Sm;
43 Emdot = f*Ih*Sm*(1−ITN)/(Sm+Em+Im)−g*Em−mum*Em−h*ITN*Em−j*IRS*Em;
44 Imdot = g*Em−mum*Im−alpham*Im−h*ITN*Im−j*IRS*Im;
45

46 %% "squiggle" equations are for the F matrix (see paper, section 3)
47 Ehsquiggle = a*Im*Sh*(1−ITN)/(Sh+Eh+Ih+Rh);
48 Ihsquiggle = 0;
49 Emsquiggle = f*Ih*Sm*(1−ITN)/(Sm+Em+Im);
50 Imsquiggle = 0;
51 F = jacobian([Ehsquiggle Ihsquiggle Emsquiggle Imsquiggle], [Eh Ih Em Im]);
52

53 %% "hat" equations are for the V matrix (see paper, section 3)
54 Ehhat = c*Eh+muh*Eh;
55 Ihhat = −c*Eh+d*Ih+muh*Ih+alphah*Ih;
56 Emhat = g*Em+mum*Em+h*ITN*Em+j*IRS*Em;
57 Imhat = −g*Em+mum*Im+alpham*Im+h*ITN*Im+j*IRS*Im;
58 V = jacobian([Ehhat Ihhat Emhat Imhat],[Eh Ih Em Im]);
59

60 G = F*Vˆ(−1); %% The next generation matrix
61 G2 = subs(G, [Sh Eh Ih Rh Sm Em Im], [Nh, 0, 0, 0, Nm, 0, 0]);
62 %% Determines the dominant eigenvalue of the next generation matrix
63 eigenvalue = max(double(eig(G2)));
64 disp([num2str(overall), ':', ' ITN = ', num2str(ITN), ', IRS = ', ...
65 num2str(IRS),' >>>> dominant eigenvalue: ', num2str(eigenvalue)])
66 Rnaught2tosave(end + 1) = eigenvalue; ITNtoSave(end + 1) = ITN; ...
67 IRStoSave(end + 1) = IRS;
68 end
69 %% Saves the Data in a .mat file
70 save('Rnaught Method2 Data121.mat', 'ITNtoSave', 'IRStoSave', 'Rnaught2tosave')
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