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Abstract

In this work, we investigated a numerical solver that combines Alternating Direction Implicit (ADI)
methods with CLAWPACK to address mixed-type equations, such as the parabolic-hyperbolic system of
PDEs describing surfactant spreading on a thin liquid film. In particular, we probed the effects of the
spatial and temporal grid on the results of the simulations. Spatial grid effects were studied by rotating a
controlled set of initial conditions relative to the grid, while temporal grid effects were studied by varying
the time step and spatial resolution.

1 Introduction

Claridge, Levy, and Wong [2] have developed an open source, first order numerical solver that simulates
the evolution of a thin liquid film. We demonstrate the effectiveness of this code in solving a system of
coupled nonlinear partial differential equations that models the evolution of a thin liquid film with insoluble
surfactant. These equations are of mixed type, both hyperbolic and parabolic. The novelty of this code is
that it solves hyperbolic and parabolic terms of the model separately to accurately resolve features of the
solution characteristic of each type of equation.

The purpose of this investigation is to quantify the effects of the rectangular spatial grid on the results of
these simulations. Specifically, we discuss how the symmetry of a solution depends on the spatial resolution,
as well as the relationship between the spatial resolution of a simulation and the time step required for
that simulation to run most efficiently. The results of these investigations may benefit future users of this
numerical solver by informing their choice of spatial and temporal resolution; with these findings, users
may choose a spatial resolution that reduces asymmetry to a tolerable level and a time step that allows the
simulation to run as fast as possible given the chosen spatial resolution.
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1.1 The Model

The numerical solver employed in this paper solves thin film equations, such as the system of nonlinear
partial differential equations modeling a thin film with insoluble surfactant:
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Eq. 1a models the evolution of the film height, h(x, y, t), and Eq. 1b models the surfactant concentration,
Γ(x, y, t), where x and y are the non-dimensionalized spatial coordinates and t is non-dimensionalized time.
In both equations, the ∇σ term describes the Marangoni forces caused by the surfactant; this is what drives
the system. The function σ(Γ) = (1 + µΓ)

−3
[1] is the equation of state, which describes the effect of the

surfactant on the surface tension of the film. The non-dimensionalized coefficients, β, κ, and δ, describe
the relative strengths of the various forces acting on the film. The second-order β terms describe the effects
of gravity in the spreading of the film and the surfactant, while the fourth-order κ terms describe the
effects of capillarity on the system. The surfactant equation also has a second-order δ term, which describes
the diffusion of the surfactant across the surface of the film. The non-dimensionalized coefficients can be
expressed as

β =
ρgH2

S
, κ =

γH2

SL2
, δ =

µD

SH
, (2)

where ρ is the fluid density, µ is the fluid viscosity, γ is the surface tension parameter, D is the surface
diffusivity, g is the acceleration due to gravity, L is the radius of the ring, H is the initial film height, and
S is the reduced surface tension, or the difference between the surface tension of glycerin and the surface
tension of glycerin with a monolayer of surfactant.

The terms in these equations can be classified as either parabolic or hyperbolic based on the highest
order derivative in each term. In the film height equation, Eq. 1a, the β and κ terms each contain a second
derivative of h. Similarly, in the surfactant equation, Eq. 1b, the ∇σ and the δ terms contain a second
derivative of Γ. Therefore, these terms behave similarly to the heat equation and are classified as parabolic.
In contrast, the ∇σ term in Eq. 1a contains a first derivative of h, and the β and κ terms in Eq. 1b contain
first derivatives of Γ. Therefore, these terms behave similarly to the wave equation and are classified as
hyperbolic.

We chose to use this system of equations to study the effects of the spatial grid on the symmetry of a
solution. In addition, we explored the relationship between the time step and the spatial resolution of a
simulation. Our goal was to understand how we could limit the effects of the grid size on the result of a
simulation while maintaining a reasonable run time.

1.2 The Numerical Solver

The numerical solver developed by Claridge, Levy, and Wong is designed to solve nonlinear systems of partial
differential equations involving both parabolic and hyperbolic terms. It is based on a finite volume method,
where the surfactant concentration and film height are averaged over each cell, yielding the values associated
with the cell center. The hyperbolic terms in the system are solved using CLAWPACK [5]. The parabolic
terms are solved using an Alternating Direction Implicit (ADI) method. These simulations used a no-flux
boundary condition. We performed a grid refinement test to confirm that this code is first order.

2 Rotation and Grid Effects

In an ideal numerical simulation, the orientation of a symmetric initial condition with respect to the spatial
grid would not affect the results of a simulation. However, when a rectangular grid is imposed on a symmetric
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initial condition such that the grid doesn’t align with the axis of symmetry, we found that the grid introduces
small asymmetries1 into the simulation. Understanding these numerical errors and how to minimize them
is important if we want to compare the results of these simulations to experimental results; in order to
make meaningful comparisons, we must quantify the uncertainty that arises from spatial and temporal
discretizations.

We developed two methods of measuring the error associated with misalignment on a rectangular grid.
The first method explores how rotating an initial condition by an angle θ affects the symmetry of corre-
sponding points across the visual line of symmetry after running the simulation; this method measures how
much asymmetry is introduced by the rotation in a single simulation. The second method compares the
results of two simulations that differ only by the rotation angle θ of the initial condition; this comparison
indicates how much the solutions vary based on the alignment of the initial condition to the spatial grid.

2.1 General Initial Condition

In this section, we rotated an initial condition and observed how the simulation progressed differently due
to that rotation. In recent experiments, such as those described in [3], the surfactant is generally deposited
on the film in a shape that is rotationally symmetric with respect to every angle. However, such an initial
condition is not suitable for this study because rotating it has no effect. Therefore, to probe the effects of
rotation on a simulation, we needed an initial condition with limited rotational symmetry.

For both methods, we chose a film of uniform height, h(x, y, 0) = 1, and a non-zero initial surfactant
concentration inside a plus-shaped region. The four arms of the plus sign each have length 1 and width 0.5,
and the initial condition is rotated counterclockwise from alignment with the grid by an angle θ.

The choice of shape for the surfactant concentration profile is motivated by simulations in [6], which
tracked the speed and location of the leading edge of the surfactant. To be consistent with this work, we
have defined a continuous initial surfactant concentration that is non-differentiable at the boundaries of the
plus shape.

The initial surfactant concentration is calculated as follows. Let the u- and v-axes be aligned with the
plus sign (i.e. the x- and y-axes (respectively) rotated counterclockwise by the angle θ), and let (u, v) be the
coordinates of some point inside the plus sign with respect to the u- and v-axes (Fig. 1). Note that (u, v)
can be found by rotating the point (x, y) clockwise by the angle θ. Then define the surfactant concentration
to be:

Γ(u, v) =


(

1−
(

max(|u|,|v|)
1.0

)10)(
1−

(
min(|u|,|v|)

0.25

)10)
if max(|u|, |v|) < 1.0 and min(|u|, |v|) < 0.25

0 otherwise

The 1.0 and 0.25 in the denominators above are, respectively, the length and half the width of each arm of
the plus sign. The surfactant concentration at the boundaries of the plus sign (where max(|u|, |v|) = 1.0
or min(|u|, |v|) = 0.25) is zero, and as you move away from the boundary into the plus sign, the surfactant
concentration rapidly rises toward 1. A surface plot of this equation is shown in Fig. 2. Additionally, by
taking the absolute values of u and v and using their maximum and minimum values rather than using u
and v directly, we construct the plus sign in an inherently symmetric way. The surfactant concentration is
computed at discrete points (the centers of the cells) for one-eighth of the plus sign’s area (Fig. 3), and the
remaining values are found by reflecting and rotating this region. An example of how this initial condition
evolves in time is shown in Fig. 4.

2.2 Measurement 1: Asymmetry of the Solution

To probe the effects of the rectangular spatial grid, we compared several simulations using the rotated plus
sign initial condition described above in Section 2.1. We varied two parameters, the distance between cell
centers, ∆x, and the angle of rotation, θ.

1In general, these asymmetries are not easily visible unless the spatial discretization is very coarse. However, we show that
these asymmetries can introduce significant error in Section 2.4.
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Figure 1: The rotated plus sign initial condition. The shaded region contains surfactant, and the points
(x, y) and (u, v) are representative of each coordinate system. The gray dashed lines on the perimeter are
reference lines located at x = ±1 and y = ±1.

Figure 2: A surface plot showing the surfactant concentration (in number of monolayers) as a function of
position for the rotated plus sign initial condition.

Figure 3: The unrotated plus sign initial condition. The darker region shows where max(|u|, |v|) = x and
min(|u|, |v|) = y. Surfactant concentration on the rest of the plus sign is defined by rotating and reflecting
the values in the darker region.
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(a) (b)

Figure 4: The plus-sign initial condition and a later frame showing how the system evolves in time. The
height of the film is plotted on the z-axis, and the concentration of surfactant is represented by the color of
the surface.

We developed two metrics to measure the asymmetry of a solution across its expected axis of symmetry.
Both metrics compare cells at corresponding locations across an axis of symmetry of the initial condition.
The first is the Average Squared Difference metric, which does not depend on the grid spacing but is strongly
affected by the size of the domain relative to the initial surface area containing surfactant. The second is
the Maximum Difference metric, which is sensitive to outliers but is easier to compare across simulations.

In describing these metrics, we use the following naming conventions. Points in the domain are referred
to by their x and y coordinates. The spatial domain is divided into rectangular cells, which are indexed
by i in the x direction and by j in the y direction, where i ranges from 1, 2, . . . , imax and j ranges from
1, 2, . . . , jmax. The choice of imax and jmax combined with the size of the domain determines the spatial
resolution of the simulation, or the number of cells per unit length in the x and y directions. Recall that the
finite volume method computes cell averages, which are then associated with the center of each cell.

Average Squared Difference The first metric of asymmetry was calculated as follows:

1. For each cell, reflect the coordinates of its center across an axis of symmetry of the initial condition.
Note that the axis of symmetry relates x and y coordinates, not i and j indices. (Some points will reflect
to coordinates outside of the computational domain. These points are excluded from the calculation.)

2. In general, the reflected coordinates will not correspond to the exact center of a cell. Use a bilinear
interpolation2 on the four cell centers nearest to the reflected point to generate a single value for
comparison. This value approximates the value at the reflected coordinates, so if the solution is
symmetric, then this value should be close to the value of the cell that was reflected.

3. Square the difference between the interpolated value and the value associated with the cell that was
reflected. Since the interpolated value doesn’t correspond to an actual cell, we do not expect this
value to be zero; however, because the film height and surfactant concentration are expected to be
continuous, it should be small.3

2A linear interpolation weights points according to their proximity to the coordinate of interest. A bilinear interpolation
performs two pairwise interpolations and then interpolates these values.

3It should be noted that since we are comparing the value at the center of a cell on one side of the expected axis of symmetry
with a weighted average of four cell centers on the other side, the two values compared will not match exactly even if the
simulation is perfectly symmetric. However, since we use a continuous function for the surfactant profile, this difference should
be small, especially at finer spatial resolutions. Nonetheless, this method will tend to overestimate the asymmetry of the
simulation. This means that our measurements of asymmetry, rather than being a precise measure of how asymmetric the plot
is, instead represent an upper bound on the asymmetry.
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4. Calculate the average of the squared differences over all cells. This value provides a measure of
asymmetry.

We use an average so that the result will not depend on the resolution of the grid. It is difficult to quantify
the dependence of the Average Squared Difference metric on the relative sizes of the domain and the region
containing surfactant. To interpret an asymmetry value, we must compare it to other asymmetry values for
simulations using the same domain size; a single asymmetry value is nearly impossible to interpret without
these comparisons. The limitations of the Average Squared Difference metric motivated us to investigate an
alternate method that provides an easier-to-interpret asymmetry value.

Maximum Difference The Maximum Difference metric is calculated by reflecting the coordinates of each
cell across the visual line of symmetry and interpolating, as before. For the Maximum Difference metric,
however, instead of summing squared differences, we simply track the largest difference. The advantage of
this metric is that the units of the asymmetry measurements are more intuitive; they are simply a fraction
of the characteristic height. For example, if the maximum difference is on the order of 0.01 times the
characteristic height, then the worst asymmetry error is only a 1% difference, which is acceptable for first
order code. However, the disadvantage of the Maximum Difference metric is that it is sensitive to outliers;
one large outlier will obscure the rest of the data.

We chose to use the Maximum Difference metric of asymmetry; for the remainder of this paper, measures
of asymmetry are made using this metric.

2.3 Measurement 2: Rotation Effects

Method 1 measures the asymmetry introduced when the axis of symmetry of the initial condition is not
aligned with the spatial grid. However, it is possible that if we compare two simulations whose initial
conditions only differ by an angle of rotation, we will find that the solutions differ from each other even
though they are both symmetric; in other words, symmetry does not guarantee that the solution of a
simulation with a rotated initial condition will yield the same results as a simulation whose axis of symmetry
is aligned with the grid. We use the term rotational mismatch to refer to the possible differences between
solutions whose initial conditions only differ by an angle of rotation.

Whereas in Method 1 we compared corresponding points across the visual line of symmetry, in Method
2 we quantify the rotational mismatch by comparing the results of two simulations whose initial conditions
differ only by the angle of rotation, θ. The unrotated initial condition has an axis of symmetry aligned with
the spatial grid. To compare the two simulations, we need to de-rotate the result of a rotated simulation and
compare the result to a simulation that was not rotated in the first place. The de-rotated plot is generated
and the comparison is made as follows:

1. Create a new array, of the same size as the other plots, with uninitialized cell values. This will become
the de-rotated plot.

2. Calculate cell values in the new plot as follows:

(a) Rotate the coordinates of a cell from the new plot counterclockwise about the origin by the angle
θ. Use domain coordinates (x, y), not cell indices (i, j).

(b) Compute a bilinear interpolation of the values at the four cell centers nearest these coordinates
in the rotated simulation. This provides the value of the cell in the new plot. (If the rotated
coordinates are outside of the domain, omit this point from the analysis.)

3. This process yields a plot of the rotated simulation de-rotated, so that its expected axis of symmetry
is aligned with the grid again.

4. Compare corresponding cells in the de-rotated plot and the plot from the unrotated run. We chose to
use the Maximum Difference metric.
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The comparison between the de-rotated plot and the plot from the unrotated run is intended to measure
the rotational mismatch. However, it is important to note that some additional error may be introduced
by the bilinear interpolation used to generate the de-rotated plot. Therefore, the value produced by this
method is only an upper bound for the rotational mismatch.

2.4 Symmetry Results

Using the two metrics defined in the previous sections, we can now determine the conditions necessary to
reduce grid effects to tolerable levels. In this section, we examine how the asymmetry of a simulation changes
over time, as well as how the asymmetry and the rotational mismatch depend on the angle of rotation. All
simulations use the rotated plus sign initial condition described in Section 2.1. We vary two parameters, the
distance between cell centers, ∆x, and the angle of rotation, θ. Each simulation has a square domain with
a side of length 8. The square grid cells of each simulation have a length of ∆x = 0.1 (coarse resolution),
∆x = 0.05, or ∆x = 0.025 (fine resolution). The angle of rotation of the initial condition range from 0◦ to
90◦ by intervals of 11.25◦ (giving nine angles of rotation).

In all of our simulations, we show that the asymmetry in both the film height and the surfactant con-
centration decrease as the simulation progresses. The least asymmetry occurs for angles of rotation that
are more closely aligned with the grid. As expected, simulations run at an angle of 0◦, 45◦, and 90◦ have
virtually no asymmetry. However, there is significant rotational mismatch between simulations run at 45◦

and those run at 0◦ (or 90◦). The asymmetry and the rotational mismatch both decrease as the spatial grid
is refined; a grid size of ∆x = 0.05 is sufficient to limit both of these errors to less than 1% in all simulations.

Let us now discuss the simulations in greater detail. The first question we investigated was whether or
not asymmetries in the initial condition would persist during the simulation. Fig. 5 shows asymmetry in
height versus time for a resolution of ∆x = 0.025. The data for corresponding angles of rotation (0◦ and
90◦; 11.25◦ and 78.75◦; 22.5◦ and 67.5◦; and 33.75◦ and 56.25◦) are identical to within 0.1% error, which
is expected since such runs are equally well aligned with the grid; the points plotted in Fig. 5 represent the
average of the data from each corresponding pair of angles. The simulations with initial conditions rotated
0◦, 45◦, or 90◦ evolved symmetrically, which is unsurprising since these initial conditions are aligned with
the grid. The remaining data series for corresponding angles have the same general pattern: they increase
to a local maximum, then decrease over time. Since the initial height is uniform (and therefore perfectly
symmetric), the initial increase is to be expected. The subsequent local max followed by a decrease is
encouraging; it implies any asymmetries in the initial condition tend to smooth away in time rather than
propagating through the simulation.4

Similarly, we found that the asymmetry in the surfactant concentration also decreases with time. The
plot of surfactant concentration asymmetry versus time (Fig. 6) shows that surfactant concentration is most
asymmetric at t = 0, then quickly approaches 0; again, this implies that the asymmetry does not propagate
as the simulation progresses. The smoothing terms in Eq.1a and Eq.1b probably cause the sudden decrease
in asymmetry. However, it is possible that the solution would remain asymmetric if there were no smoothing
terms in the equations. The inset in Fig. 6 is rescaled to better show the data after time 0.

Once we established that asymmetries do not persist through a simulation, we wanted to know how the
angle of rotation and the resolution of the spatial grid affect the asymmetry. Fig. 7 shows the asymmetry in
film height versus angle at various spatial resolutions. The corresponding graph for surfactant concentration
has a very similar shape and so has been omitted. As mentioned above, for initial conditions rotated by
0◦, 45◦, or 90◦, the plus sign is aligned with the grid and the solution is therefore quite symmetric. The
asymmetry increases as the angle of rotation moves further away from one of these three angles. For all
angles, the asymmetry decreases as the resolution increases (i.e., as ∆x decreases). Since the asymmetry
decreases as the grid is refined regardless of the angle of rotation, we know that for any acceptable level
of asymmetry, we can choose a sufficiently small spatial resolution to ensure that our asymmetry does not
exceed this level. For instance, given this particular initial condition, we can say that the asymmetry in film

4On a domain of the chosen size, waves created by the parabolic terms have reached the edges of the domain by time 1.3.
After this time, asymmetry increases once more as the waves reflect from the boundary. However, this rise in asymmetry is not
present (or is delayed) in simulations with larger domains.
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Figure 5: Asymmetry in height over time at various angles of rotation and a resolution of ∆x = 0.025
measured with the Maximum Difference metric described in Section 2.2.
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Figure 6: Asymmetry in surfactant concentration over time at various angles of rotation and a resolution of
∆x = 0.025, measured with the Maximum Difference metric.
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height is never worse than 1% of the characteristic height for ∆x ≤ 0.05. The asymmetries for surfactant
concentration are actually slightly higher; if we require at most a 1% error in surfactant concentration, the
necessary spatial resolution may be as small as ∆x = 0.025.
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Figure 7: Asymmetry in height versus angle of rotation at various spatial resolutions and at time 0.3 measured
with the Maximum Difference metric. The shape is reasonable: low asymmetry at 0◦, 45◦, and 90◦, and
high in between.

As discussed previously in Section 2.3, it is possible for a solution to be symmetric but still differ from
the result of a simulation with the same initial condition rotated by a different angle. Recall that we define
rotational mismatch to be the difference between the results of two such simulations. After determining that
it is possible to limit asymmetry by refining the spatial grid, we investigated how the rotational mismatch
of a simulation depended on the angle of rotation and the size of the spatial grid. A plot of rotational
mismatch of the film height versus angle of rotation for various spatial resolutions is shown in Fig. 8. Again,
rotational mismatch decreases as the resolution is increased. In fact, the shape is somewhat reminiscent
of the analogous asymmetry graph, but with one important difference. While simulations with an initial
condition rotated at 45◦ have virtually no asymmetry, they have the largest rotational mismatch. This
implies that a 45◦-rotated plus sign evolves very symmetrically, but quite differently from an unrotated plus
sign. Because rotational mismatch decreases for all angles of rotation as the grid is refined, we can again
choose a sufficiently large spatial resolution to ensure that the rotational mismatch is less than any given
value. In this case, we can reduce the rotational mismatch to less than 1% using a spatial grid of size
∆x = 0.05.5 Because of errors introduced in making the de-rotated plot, as previously mentioned, this is
actually an upper bound on the error. These answers are encouraging; a ∆x of 0.05 is reasonably coarse,
yet seems to be sufficient to substantially limit grid effects.

3 Time Step and Resolution

For each simulation, the user must choose a spatial resolution and provide an initial time step for the solver.
Both the CLAWPACK and ADI portions of the code use adaptive time stepping to improve runtime; however,
the user must give a reasonable initial time step in order for the simulation to converge to a solution. Too
large an initial time step will cause the simulation to fail, either because the Courant-Friedrichs-Lewy (CFL)
condition [4] is not met or because Newton’s method fails to converge; too small an initial time step will
cause the simulation to run slowly. Our goal was to describe the relationship between the largest possible
(and therefore most efficient) time step and the grid size of a particular run.

5As in the results for asymmetry, the rotational mismatch error in the surfactant concentration is slightly higher than the
rotational mismatch error in the film height. To limit rotational mismatch error to less than 1% in both film height and
surfactant concentration, we need ∆x between 0.05 and 0.025.
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Figure 8: Rotational mismatch in height versus angle of rotation at various spatial resolutions and at time
0.3 measured using the Maximum Difference metric.

3.1 Temporal Grid Refinement

We noted that in general, if a run failed (either because the CFL condition was not met or because Newton’s
method failed to converge6) it would do so within the first 0.5 non-dimensionalized time units. Therefore, for
the purposes of this investigation, we define a successful run to be one that reached 1.8 non-dimensionalized
time units, where 1.8 was chosen for its divisibility properties. While 1.8 time units may sound small, in a
typical simulation, a disk-shaped surfactant initial condition could easily have doubled in diameter in this
time.

To study the relationship between the size of the grid cells, ∆x, and the time step, ∆t, we ran several sim-
ulations with identical initial conditions, varying only the time step or the grid size, and recorded which runs
were successful. For these runs, the adaptive time stepping feature was disabled in both the CLAWPACK
and ADI portions of the code, which ensured that the reported time step worked for the entire simulation.
However, in practice users will take advantage of the variable time step feature, and a larger initial time step
could be used.

To study the effects of the spatial and temporal resolution on a simulation, we chose to use an outward-
spreading disk initial condition7. This choice was motivated by experiments being performed at the Daniels
Lab at North Carolina State University [3]. In these experiments, a metal cylinder is placed in the middle
of a thin film of 99.5% anhydrous glycerin, and a monolayer of surfactant (a fluorescently tagged lipid) is
placed inside the cylinder. When the cylinder is lifted from the film, the surfactant begins to spread outward,
and changes in film height and surfactant concentration are measured using a laser line and a fluorescence-
tracking camera. Because in this section we are not studying the effects of rotation, we can choose an initial
condition that more closely models these experiments.

We chose to define the outward-spreading disk initial condition in two ways. In both cases, the height
of the film was uniformly h = 1, and the surfactant was contained in a disk of radius 1. The surfactant is
assumed to not add to the height of the film; a higher concentration means that the monolayer of molecules is
more densely packed. The surfactant concentration profile was defined in two ways. The first was continuous

6In some cases, the simulation did not fail in the sense that the CFL condition was satisfied and Newton’s method was able
to converge, but the results of the simulation were nonsensical; for instance, with very coarse grids (on the order of ∆x = 0.2),
we noted negative values for the film height and surfactant concentration. These runs are considered to have failed.

7In general, we found that the time step and grid size required for a particular simulation depended more on the derivate of
the initial surfactant concentration (i.e. the difference in surfactant concentration between adjacent cells) than on the specific
shape of the region containing surfactant. Therefore, we expect the results from this section to apply to initial conditions of
any shape, including the rotated plus sign defined in Section 2.1
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(a) Surfactant concentration in number of monolay-
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ers as a function of the radial position, Eq. 3b.

Figure 9: Surfactant concentration profiles for the two initial conditions used in the temporal grid refinement
analysis. Note that Eq. 3a is not differentiable at r = 1 (Fig. 9(a)), while Eq. 3b is continuously differentiable
(Fig. 9(b)).

everywhere, but was not differentiable at the boundary of the disk:

Γ (r) =

{(
1− r10

)
for r ≤ 1

0 elsewhere.
(3a)

The second was differentiable everywhere:

Γ (r) =

{
1
2 (cos (πr) + 1) for r ≤ 1

0 elsewhere.
(3b)

In both cases, the surfactant concentration is defined in polar coordinates, i.e., r =
√
x2 + y2. (Note that

the simulations are still two dimensional; we have simply defined the initial surfactant condition in an
axisymmetric way.) A plot of each of these functions is included in Fig. 9. The motivation for the corner in
the first profile, as with the plus sign initial condition, is to be consistent with initial conditions used in [6].
Both initial conditions are used in the following temporal grid refinement study.

Fig. 10 summarizes the results of the simulations of outward spreading disks, where the time step and
the spatial resolution were varied. It shows the time step, ∆t, vs. the grid size, ∆x, on a log-log scale. Each
error bar represents the range in which we know the largest possible time step for a given spatial resolution
exists; runs with time steps larger than the upper edge of the error bar will fail, while runs with time steps
smaller than the lower edge of the error bar will succeed. It is possible to shrink the error bar further by
running additional simulations with intermediate values for the time step. The point on the graph is the
average of the upper and lower edges of the error bar and does not represent an actual simulation. The
equation for a power law was fit to this data, and the relationship between the maximum time step and the
spatial resolution is at worst approximately a power law of the form ∆t ∝ ∆x4.5.

It is worth noting that the relationship between the time step and the grid size is more closely a power
law for the differentiable outward-spreading disk initial condition than for the non-differentiable outward-
spreading disk initial condition. As the spatial resolution is increased, the time steps required by each initial
condition seem to converge to a common curve. This suggests that smaller time steps are required when there
are larger differences in surfactant concentration between adjacent cells. As the grid is refined, the difference
in concentration between adjacent cells is decreased, so that the time step required by the differentiable
and non-differentiable initial conditions become more similar. This implies that the smallest time steps are
required at the very beginning of the simulation; once the system has started to evolve and the surfactant
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Figure 10: Maximum ∆t vs. ∆x for differentiable and non-differentiable outward spreading disks. For
resolutions less than ∆x = 0.05, the two curves coincide.

has diffused over the surface, the difference in surfactant concentration between adjacent cells will decrease,
and a larger time step may be sufficient.

4 Conclusion

The goal of this research was to quantify the error that is introduced by a spatial and temporal grid on the
results of a simulation, as well as to identify conditions under which these errors are negligible. We found
that, as an initial condition is rotated away from a line of symmetry associated with the spatial grid, more
asymmetry is introduced into the solution. We also found that the rotational mismatch, or the degree to
which the solution changes as the initial condition is rotated, increases as the angle of rotation moves further
from 0 or 90 degrees. However, both the asymmetry and the rotational mismatch decrease as the spatial
resolution is improved. Therefore, for any desired level of accuracy in the results, it is possible to choose a
small enough spatial resolution to ensure grid effects are sufficiently small.

However, there is a large trade-off between the spatial resolution and the time required for a simulation
to complete. If the length of the grid cells is decreased by a factor of two, then the time step used must
decrease by nearly a factor of twenty. Fortunately, a variable time step will greatly improve the run time of
the simulation; as the surfactant spreads over the surface of the film, the difference in surfactant concentration
between adjacent cells decreases, and a larger time step could be used.

The numerical solver created by Claridge, Levy, and Wong can be used to solve a wide range of problems;
it is especially well suited for nonlinear systems of partial differential equations of mixed type. The results of
this study will assist future users of this numerical solver in choosing a spatial and temporal resolution that
suits their needs. Users of this solver will be able to accurately balance the benefit of reducing asymmetry
and rotational mismatch with the cost (in computational time) required to achieve a given level of accuracy.
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