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Abstract

This study uses quantile regression combined with time series methods to analyze
change in temperatures in Chicago during the period 1960-2010. It builds on previous
work in applying quantile regression methods to climate data by Timofeev and Sterin
(2010) and work by the Chicago Climate Task Force on analyzing climate change in
Chicago. Data from the Chicago O’Hare Airport weather station archived by the Na-
tional Climatic Data Center are used to look at changes in weekly average temperatures.
The method described by Xiao et al. (2003) is used to remove autocorrelation in the
data, together with the rank-score method with IID assumption to calculate confidence
intervals, and nonparametric local linear quantile regression to estimate temperature
trends. The results of this analysis indicate that the decade 1960-1969 was significantly
colder than later decades around the middle of the yearly seasonal cycle at both the
median and 95th percentile of the temperature distribution. This analysis does not
find a statistically significant trend over the later decades, 1970-2010.

1 Introduction

Climate change, including change in key climate characteristics such as temperature
and frequency of extreme weather events, has become an important area of research,
particularly as it is hypothesized that this change may be induced by human activities.
Evidence has accumulated that climate is changing at the continental and global level
with shifts such as increased temperature and greater weather volatility, and that
these changes can indeed be traced to human activities since the start of the Industrial
Revolution [14, Chapter 9, Executive Summary]. The effects of climate change have
not been verified for smaller regions due to greater natural variability over smaller

The author, Julien Leider, may be reached by email at jleide2@uic.edu. This research was super-
vised by Dr. Jing Wang and Dr. Dibyen Majumdar from the Department of Mathematics, Statistics,
and Computer Science at the University of Illinois at Chicago. Dr. Wang may be reached by email at
wangjing@math.uic.edu.

Copyright © SIAM 
Unauthorized reproduction of this article is prohibited

148



sample sizes [14]. However, research has been conducted on possible effects of climate
change at the local level; for instance, Timofeev and Sterin research local effects in
Russia in [15].

The topic of this paper is the analysis of climate change in Chicago over the years
1960-2010 inclusive. The Chicago Climate Task Force has previously conducted re-
search on this and published its results as the Chicago Climate Action Plan [2]. They
downscaled global climate models to consider the possible future effects of global cli-
mate change at the local level. They also analyzed historical data both to calibrate this
downscaling and to observe changes that have already occurred. For that purpose, they
relied on monthly, daily, and hourly climate records from 14 National Weather Service
stations providing at least 40 years of continuous coverage up to 1990 [2, Chapter 2,
p. 7]. In particular, in order to analyze changes within the city of Chicago, they used
observations from the Chicago Midway Airport, the Chicago O’Hare Airport, and the
University of Chicago. Their analysis of historical data includes inspection of monthly
mean temperatures as well as certain observed extreme weather events.

This paper takes the analysis of Chicago climate data further by applying quantile
regression techniques to local temperature data using the statistical package R [12] and
the R quantreg [6] package. The use of quantile regression allows us to systematically
evaluate patterns in extreme temperatures over time. It also allows us to estimate
central tendency more robustly using the median. This paper combines quantile re-
gression with time series methods in order to appropriately handle the autocorrelation
structure of the data. Data archived by the National Climatic Data Center [8] from
the Chicago O’Hare Airport, one of the sites used by the Chicago Climate Task Force,
are used for this purpose.

Quantile regression methods were successfully applied in order to carry out a cross-
decade comparison of seasonal temperature patterns. This analysis indicates that the
decade 1960-1969 was significantly colder than the later decades 1970-2010 both at very
high temperatures (the 95th percentile) and at average temperatures (the median), but
does not show a statistically significant trend over the period 1970-2010.

2 Quantile Regression

Quantile regression was originally proposed in 1978 by Roger Koenker and Gilbert Bas-
sett as a robust alternative to least-squares regression [7] and was described at length
by Koenker in [5]. However, the basic idea of quantile regression dates back to work
by Ruder Boscovich in the 18th century which was continued by Pierre-Simon Laplace
and Francis Edgeworth in the 19th century [5, p. 2-5]. Due to the computational diffi-
culty of quantile regression, it was not until the advent of linear programming together
with increased computing power that the method was rediscovered and put to use in
the 20th century. Quantile regression offers a number of advantages over least-squares
methods. While ordinary least squares regression typically assumes that the error
terms are IID, normally distributed, and homoscedastic, quantile regression does not
require these restrictive assumptions. Furthermore, since quantile regression estimates
quantiles of the conditional distribution rather than the mean, it is more resistant to
outliers than least-squares methods.

In contrast to the least-squares loss function L(u) = u2, quantile regression makes
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Figure 1: The quantile regression loss function.
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use of the asymmetric loss function (shown in Figure 1)

L(u) = |u| · (τ · I(u ≥ 0) + (1− τ) · I(u < 0)) = u · (τ − I(u < 0))

where τ corresponds to the quantile to be estimated [5]. Note that if τ = 0.5, i.e., the
median is being estimated, then this loss function becomes simply

L(u) = |u|

and the sum of the absolute values of the residuals is minimized to perform regression.
To see that this loss function leads to the quantiles, note that we seek to minimize

E[L(X − x̂)] =

∫ ∞

−∞
L(x− x̂)dF (x)

= (τ − 1)

∫ x̂

−∞
(x− x̂)dF (x) + τ

∫ ∞

x̂
(x− x̂)dF (x)

where F (X) is the cumulative distribution function (CDF) of the random variable
X. The derivative of this expectation with respect to x̂, when f(x) is the probability
density function (PDF) of X, is

d

dx̂
[(τ − 1)

∫ x̂

−∞
(x− x̂)dF (x) + τ

∫ ∞

x̂
(x− x̂)dF (x)]
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=
d

dx̂
[(τ − 1)(

∫ x̂

−∞
xdF (x)− x̂

∫ x̂

−∞
dF (x))− τ(

∫ x̂

∞
xdF (x)− x̂

∫ x̂

∞
dF (x))]

= (τ − 1)(x̂f(x̂)− x̂f(x̂)− 1 ·

∫ x̂

−∞
dF (x))− τ(x̂f(x̂)− x̂f(x̂)− 1 ·

∫ x̂

∞
dF (x))

= (τ − 1)(−F (x̂))− τ(1− F (x̂))

= F (x̂)− τ

To find the minimum, this derivative is set equal to zero; then F (x̂) = τ . Note that
the second derivative of this expectation is just f(x̂), which is a nonnegative function,
so we have indeed found a minimum. Thus, minimizing the value of this loss function
applied to the residuals does lead to estimating quantiles of the response variable.

In practice, the CDF F(x) is unknown. Instead, the empirical CDF Fn(x) =
∑n

i=1 I(xi ≤ x), based on sample observations, is used. To calculate the sample
quantiles, we minimize the same expectation; in this case,

∫∞
−∞ L(x − x̂)dFn(x) =

1
n

∑n
i=1 L(xi− x̂). Since 1

n is a constant for any given sample of size n, minimizing that
expression is equivalent to minimizing

∑n
i=1 L(xi − x̂).

To fit a model yi = βTxi + ǫi, we estimate β using

β̂ = argminβ∈Rd

∑

i

L(yi − βTxi)

where d is the number of parameters in our model, so that β and xi are vectors of length
d. This computation cannot be carried out analytically, in contrast to the computation
of least squares regression. Instead, this can be reformulated as a problem in linear
programming [5]. Let ui and vi be slack variables corresponding to the positive and
negative parts of the residuals yi − βxi, respectively; thus, there are n of each. Note
that ui is zero when vi is non-zero, and vice versa. Also, note that when a is positive,
L(a) = a · τ , and when a is negative, L(a) = a · (τ − 1). Thus, by separating the
residuals into their positive and negative parts, we are able to obtain a linear objective
function, which allows us to use techniques of linear programming to find a solution.
The solution is given by

β̂ = argmin(β,u,v)∈Rd×R
2n
+

{

L(1Tnu+ 1Tnv)|Xβ + u− v = y
}

= argmin(β,u,v)∈Rd×R
2n
+

{

τ1Tnu+ (τ − 1)1Tnv|Xβ + u− v = y
}

where 1n corresponds to the n-element vector containing all ones and X is an nxd
matrix containing the n observations of the explanatory variables. This corresponds to
a linear programming problem where we seek to minimize an objective function giving
hyperplanes over a polyhedral constraint set in (2n+ 1)-space.

For our purposes, quantile regression offers a number of advantages over other ap-
proaches. Most important, extreme weather is a particularly troubling potential aspect
of climate change and an increase in temperature variability is of at least as great in-
terest as a change in mean temperature over time. Thus, it would be undesirable to
assume at the outset that the data are homoscedastic for purposes of least squares
regression. Furthermore, quantile regression does not require assuming that the error
terms are normal, which leads to more robust results. These factors, together with the
ability to estimate quantiles rather than the mean, makes quantile regression signifi-
cantly more robust than least squares regression and more suited to our purposes.
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In addition, this analysis uses nonparametric methods exclusively. In particular,
local linear regression with a normal kernel is used to estimate the temperature trend,
relying on code in Koenker’s quantreg package [6]. The description in Appendix A of
[5] of available nonparametric quantile regression methods in the quantreg package was
relied on for choosing the most appropriate method. Three nonparametric methods
are discussed there: local polynomial regression, splines, and penalty methods. In
conducting this analysis, both local linear regression and splines were tried on the
data. There were significant boundary effects using splines, so local linear regression
is used throughout instead. The use of nonparametric methods avoids difficulties with
selecting an appropriate model, which is desirable as we did not have an expectation
at the outset as to the most appropriate model for the data.

Since our data occur in the form of a time series, there is a potential autocorrelation
structure which requires modifications to the traditional methods of quantile regres-
sion, which implicitly assume that the data are independent and identically distributed
(IID). We used the autocorrelation function (ACF) and partial autocorrelation func-
tion (PACF) to assess the autocorrelation of the data. Let x be a time series variable
of interest, where x is the mean of x and n is the total number of observations of x.
Let ρ(h) be the ACF, and let γ(h) be the autocovariance function. Then the sample
ACF is given by

ρ̂(h) =
γ̂(h)

γ̂(0)
,−n < h < n

where

γ̂(h) =
1

n

n−|h|
∑

t=1

(xt+|h| − x)(xt − x),−n < h < n

[1, p. 19]. Similarly, the sample PACF α̂(h) is given by

α̂(0) = 1

and
α̂(h) = φ̂hh, h ≥ 1

where φ̂hh is the last component of

φ̂h = Γ̂−1
h γ̂h

while
Γh = [γ(i− j)]hi,j=1

and
γh = [γ(1), γ(2), . . . , γ(h)]′

[1, p. 95].
We then used the method in [17] to transform the data, as described in more detail

in section 4. As part of that process, an autoregressive moving average (ARMA) model
is fit to the data. The ACF and PACF were used in determining the order of this model,
since the maximum lag at which the ACF is non-zero is associated with the order of the
moving average (MA) portion of the ARMA model, while the maximum lag at which
the PACF is non-zero is associated with the order of the autoregressive (AR) portion
of the model [13, p. 108]. Using transformed data that are more nearly IID allowed us
to reliably calculate confidence intervals, as will also be described in section 4.
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3 Data Used

The primary criteria for data selection were that data be available continuously for
at least 40 years during the last half-century, that the data come from a weather
station located in Chicago, Illinois, and that the data come from a reliable, National
Weather Service certified source. The website of the National Climatic Data Center
(NCDC) was used since the NCDC is the “world’s largest archive of weather data”
and is the official archive for the National Weather Service and other branches of
the United States government [9]. The NCDC’s data set of hourly global surface
data (DS3505) was used to locate potential data sources [8]. Since a search of other
sources, including the archives of the weather website Weather Underground [16] and
a list of National Weather Service weather stations in Illinois [10], did not identify any
appropriate sources in Chicago not listed in the NCDC’s data set, the NCDC data set
was taken to be exhaustive. In this set, only the O’Hare and Midway weather stations
offered data over a suitable time period; both included more than 50 years of data.
However, the Midway data included gaps of over a year in some cases, while the O’Hare
data included gaps of a few days at most. Thus, the data from O’Hare (WBAN number
94846) are used as the most complete and continuous available data set in Chicago.
We consider the 51 years from 1960-2010 inclusive, although the O’Hare data go back
further to 1946, since this still provides us with a sufficiently large time period to draw
meaningful comparisons while keeping the amount of data manageable. For each day,
the temperature observation at 1200 UTC was used so as to have a suitable basis
for computing weekly or monthly averages: this way, it was possible to average over
comparable data points that were not themselves the result of averaging. Python [11]
code written by the author was used to process the data files.

4 Data Analysis

The main focus of this analysis was to apply quantile regression methods to the data.
However, quantile regression methods, particularly those for calculating confidence in-
tervals, assume independent and identically distributed (IID) data [4]. Since the data
used for this analysis are a time series, it is necessary to take account of their autocor-
relation structure. In particular, in order to apply quantile regression to the original
time series, it would be important to first deseasonalize the data, since otherwise the
data would obviously be non-IID. Thus, the initial approach of this analysis was to try
to detrend and deseasonalize the data using time series methods, so as to then apply
quantile regression to the resulting stationary residuals. The ACF and PACF were
used to analyze the autocorrelation structure of the data and to assess the success of
our attempts to deseasonalize and detrend them. If the data were IID, both of these
functions would be expected to equal zero (within confidence bounds) at all non-zero
lags [1].

Deseasonalizing the data emerged as the main obstacle. A number of methods
were tried, including differencing over the period of the data [13, p. 60-62], periodic
regression [13, p. 72-73], kernel smoothing combined with differencing, and a moving
average filter combined with linear regression [1, p. 31-32]. None of these methods
produced satisfactory results, as can be seen from the plots in Figure 2. The ACF for
the results of regression combined with a moving average filter is less periodic than
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the original ACF but does not die off at any lag. The ACF for the results of periodic
regression exhibits a similar trend. The PACF plot for the results of differencing shows
spikes at yearly intervals. The PACF plot for the results of differencing combined with
kernel smoothing does not die off at any lag.

Using weekly and monthly averaged data looked like a potential solution, but was
unhelpful. This method offered the possibility of removing some of the noise in the
data, making it more manageable for plotting purposes, and eliminating any gaps in
the data, since we never had more than a few consecutive days of missing values. When
averaging, we averaged over those values that were present in any given week or month.
This approach did not solve the problem; if anything, decreasing the granularity of the
data made attempts at deseasonalizing them even less successful, as was revealed in
the data plots and the plots of the ACF and PACF.

In order to overcome the difficulty of deseasonalizing the data, the data were in-
stead divided into five decades and the temperature pattern over a single seasonal cycle
was analyzed for each decade. Data points within the same decade at the same time
of year were treated as replicates for that particular point in the seasonal cycle. Since
there is then only one seasonal cycle to analyze per decade, this eliminates the need to
deseasonalize the data, as the seasonal pattern no longer contributes to the autocorre-
lation structure of the data. This did not completely eliminate all autocorrelation in
the data, but it made it manageable as long as weekly averaged data were used and
transformations were performed where appropriate to make the data IID. Since there
were data for 51 years, the last “decade” contains data for 11 rather than 10 years.
This approach is similar to that used in [15], where the authors look at temperature
during each of the four seasons separately over a period of roughly 50 years.

Upon reaching this point, the next step in the analysis was to try applying the
transformation described in [17] in order to obtain completely IID data. The first step
in this transformation is to obtain a fit to the data using local polynomial regression; we
used local linear quantile regression at the median for this purpose. This required se-
lecting an appropriate bandwidth. The authors of [17] use the bandwidth 1.06sXT−1/5

with a Gaussian kernel when investigating their method numerically, where sX is the
standard deviation of the independent variable (in this case, time), and T is the total
number of observations. This analysis uses the code in the R quantreg package [6] to
perform local linear quantile regression; since this code uses a Gaussian kernel, that
was a good candidate bandwidth. We compared the results of using that bandwidth to
those obtained using three simple rule of thumb bandwidths: Xmax−Xmin

20 , Xmax−Xmin

10 ,

and Xmax−Xmin

5 , where, in each case, Xmax−Xmin equals the range of the independent
variable, which in this case is time. As shown in Figure 3 for decade 1, the bandwidth
in [17] and the bandwidth Xmax−Xmin

10 produce nearly identical results (similar results
are obtained for the other decades). On the other hand, the two other bandwidths do
not work well with the method for removing autocorrelation in [17] since, as it turns
out, they lead to residuals that are too autocorrelated, so that the transformation is
ineffectual. Thus, the bandwidth in [17] is used both for removing autocorrelation and
for all subsequent analysis.

The second step in the transformation in [17] is to fit an AR or ARMA model to
the residuals of the fit found in the first step. For an AR(k) model, this gives

ut = a1ut−1 + . . .+ akut−k + ǫt

where ǫi is the ith residual of this ARmodel and ui is the ith residual from the preceding
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Figure 2: ACF/PACF plots with 90% confidence intervals.
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Figure 3: Bandwidth comparison.
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nonparametric fit. None of the sets of residuals from the preceding fit appeared IID, so
an ARMA model was fit for each decade. To compare model fits, Akaike’s Information
Criterion (AIC) was used to select models leading to a minimum AIC, as suggested in
[13, p. 52]. This involved trying to fit ARMA(p, q) models with p and q between 0
and the largest non-zero (outside of confidence bounds) lag of the ACF (for the MA
portion) or PACF (for the AR portion). For each decade, this resulted in choosing
an AR model (q = 0); the orders selected for decades 1-5 were 3, 7, 3, 9, and 1,
respectively. Then we applied the transformation suggested in [17], which is given by

Ŷ t = Yt −

τ
∑

j=1

âj(Yt−j − m̂(Xt−j))

where Yt corresponds to the original series, Y t is the transformed series, and m̂(Xt) is
the value at Xt of the fit obtained using local linear quantile regression. This transfor-
mation improved the autocorrelation structure for the first decade, bringing it closer
to the IID assumption; the original and transformed data for this decade are shown in
Figure 4. It made the other decades worse, so the original version of those data was
used for the analysis. However, those data are close enough to IID, based on their ACF
and PACF, that it is safe to construct confidence intervals for the results.

It was also necessary to select an appropriate method for constructing confidence
intervals. After experimenting with each of the methods offered in the R quantreg

package [6], including direct estimation of the variance-covariance matrix under either
an IID or non-IID assumption, estimation of the variance-covariance matrix using ker-
nel smoothing, the Markov Chain Marginal Bootstrap (MCMB) method, four other
bootstrap methods, the rank-score method under an IID error assumption, and the
rank-score method under broader assumptions, as well as the modified MCMB algo-
rithm provided in the package rqmcmb2 [3] and described in [4], it turned out that
only the two rank-score methods provided reasonable results. The other methods gave
confidence bounds that were either unlimited at certain points or varied wildly. Since
the authors of [4] recommend the rank-score method with IID error assumption and
find that it performs at least as well as the other rank-score method but at lower com-
putational cost, that is used throughout for constructing confidence intervals. We use
a 90% confidence level throughout.

5 Results

The results of quantile regression for the median and two extreme quantiles, the 95th
and 5th percentiles, are shown in Figures 5-7. The most extreme quantiles that still
produced reasonable confidence interval results were used. For the 95th percentile,
there is a warming pattern both in the early and middle portions of the year which at
several points is significant (confidence interval bounds do not overlap) across multiple
decades. There is a similar pattern for the median. The confidence interval results for
the 5th percentile are significantly broader, particularly in summer, and there are not
any clear cross-decade patterns. There is also a spike in the lower confidence band for
the third decade which inspection of the data indicates is not related to outliers in the
original data. It is likely that difficulties obtaining tight confidence bounds for the 5th
percentile explain the difficulties finding clear cross-decade patterns there.
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Figure 4: Original and transformed data for the first decade.
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Figure 5: Decade-by-decade comparison, 95th percentile with 90% confidence intervals.
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Figure 6: Decade-by-decade comparison, the median with 90% confidence intervals.
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Figure 7: Decade-by-decade comparison, 5th percentile with 90% confidence intervals.
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Figure 8: Pairwise decade comparison–the first and fifth decades with 90% confidence inter-
vals.
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Figure 9: Pairwise decade comparison–the second and fifth decades with 90% confidence
intervals.
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The results of two pairwise decade comparisons are shown in Figures 8 and 9.
Comparing the first and fifth decades, there is significant warming at both the median
and the 95th percentile. The comparison of the first and fourth decades, not shown,
mirrors these results. On the other hand, comparing the second decade with the fourth
(not shown) or fifth, there is no significant change. Thus, there appears to be some
evidence the the first decade, including the years 1960 to 1969 inclusive, was unusually
cold.

6 Conclusion

In this paper, a combination of time series and quantile regression methods was success-
fully used to analyze Chicago temperature data. The method in [17] proved useful for
removing some of the autocorrelation in one decade, while the rank-score method with
IID assumption provided a working method for computing confidence intervals. Using
nonparametric local linear quantile regression with modified code from the R quantreg

package, it was then possible to carry out a cross-decade comparison of seasonal tem-
peratures. This analysis found evidence of warming from the decade 1960-1969 to later
decades, but did not find a time trend over the rest of the study period.
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