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Abstract

We examine the eigenstructure of generalized isosceles triangles and explore
the possibilities of analytic solutions to the general eigenvalue problem in other
triangles. Starting with work based off of Brian McCartin’s paper on equilateral
triangles, we first explore the existence of analytic solutions within the space of
all isosceles triangles. We find that this method only leads to consistent solutions
in the equilateral case. Next, we develop criteria for the existence of complete
solutions in other triangles. We find that complete solutions are guaranteed in the
equilateral, right isosceles and 30-60-90 triangles. We then use a method developed
by Milan Prager to formulate solutions in the right isosceles triangle through folding
transformations of solutions in the square.

1 Introduction

Analyzing the eigenstructure of an equilateral triangle was studied by Lamé [3] and later
addressed by Pinsky [8]. Pinsky’s approach utilizes reflection operators and relies on a
result from Arnol’d [1] to show that all the eigenfunctions are found. Seeing a gap in
this literature regarding the eigenstructure of the equilateral triangle Brian J. McCartin
in a series of papers provides an elementary treatment of the problem under Dirichlet
[5], Neumann [4], and Robin [6] conditions. We extend his method to formulate the
eigenstructures of other triangles. We examine, specifically in the isosceles case, under
what conditions analytic solutions exist. Next we focus on the homogeneous Dirichlet
problem in three different cases: the equilateral triangle, the 30-60-90 triangle and the
right isosceles triangle.

To develop solutions for the isosceles triangles, we modify a triangular coordinate
system presented in [5] and then develop an orthogonal coordinate system in order to
generate solutions using separation of variables. This method leads to consistent solutions
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only in the case of the equilateral triangle. However, in the coordinate system that we
have developed, we cannot derive solutions in the right isosceles triangle.

Due to the inconsistencies that were found for generalized isosceles triangles, we
explore criteria under which we can warranty the existence of complete symmetric and
anti-symmetric solutions for the triangular domain. We consider under what cases we
can tile the plane with a triangular region solely through anti-symmetric reflections in
such a way that the nodal lines of the extensions line up properly. This analysis leads to
solutions only in the cases of equilateral, 30-60-90, and isosceles right triangles.

Because of the aforementioned issues with our extension of the method presented by
McCartin, we examine solutions for the eigenvalue problem in a 30-60-90 triangle using
a method developed by Milan Prager in [9] and extended upon in [10]. In this method,
Prager uses “folding” and “prolongation” transformations of solutions in a rectangle to
obtain solutions in the 30-60-90 triangle. We then adapt this method to right isosceles
triangles through similar transformations of a square.

2 McCartin’s Method: Redefinition of Eigenvalue

Problem

The method developed in [5] we will refer to as McCartins Method. McCartin’s Method
requires a different look at the traditional eigenvalue problem in R2. Instead of defining
the boundaries under Cartesian coordinates, he develops a triangular coordinate system
using the altitudes of an equilateral triangle. We emulate this process for a general
isosceles triangle.

2.1 The Development of a Coordinate System

To solve the eigenvalue problem in an equilateral triangle, we need a coordinate system
that allows the boundary conditions to be applied along a constant boundary. We start
with a coordinate system presented by McCartin [5] and modify that set of coordinates
to be valid in any isosceles triangle. We define our triangle as indicated in Figure 1 where
two sides are of length s and the third side is of length αs, where α ∈ (0, 2). Note that
the cases α = 1 and α =

√
2 correspond to an equilateral triangle and a right isosceles

triangle, respectively. We then define the coordinate transformation:

u =
(α

2

)2
s

(
1− α2

4

)− 1
2

− y, (1)

v =

√
1− α2

4

(
x− α

2
s
)

+
α

2

(
y −

(α
2

)2
s

(
1− α2

4

)− 1
2

)
, (2)

w =

√
1− α2

4

(α
2
s− x

)
+
α

2

(
y −

(α
2

)2
s

(
1− α2

4

)− 1
2

)
. (3)

From those equations it can be seen that the u-axis bisects the triangle vertically. The
v-axis travels from the xy-origin to intersect the opposite side of the triangle at a right
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Figure 1: Isosceles Triangle

angle. The w-axis behaves similarly to the v-axis, but travels from the corner at (αs, 0) to
form a right angle with the opposite side. These axes can be seen in Figure 2. All three of
these new axes will intersect at a single point, we define that point to be u = v = w = 0
and call it the uvw-origin. A point in the triangle is defined in (u, v, w) by finding the
orthogonal projection of the point onto the three new axes. When using the (u, v, w)
location with distances from the point (0, 0, 0), we define the positive direction for the
axes as the end that intersects the side of the triangle. In the standard coordinate system,
we found the origin point to be

(x, y) =

(
α

2
s,
(α

2

)2
s

(
1− α2

4

)− 1
2

)
. (4)

We find the x-coordinate by simply moving down half of the base side length, and the
y-coordinate through an angle given by:

θ2 = arcsin
(α

2

)
. (5)

θ2 exists between the base of the triangle and either the v- or w-axis. The right triangle
formed by the right half of the isosceles triangle is similar to the triangle formed by the
w-axis, the base, and the left side of the triangle. These two triangles are related by a
factor of α; the angle θ2 is consequently half of the top angle of the original isosceles
triangle. Now we can find the height of the origin because we can form a right triangle
with the negative part of the v axis, the positive part of u and the base of the isosceles
triangle. We get the following expression for the y-coordinate of the uvw-origin:

2 tan(θ2)

αs
, (6)
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Figure 2: Isosceles Triangle with u,v,w axis

which simplifies to (4). Equations (1), (2), and (3) are derived by orthogonally projecting
a point onto each of the three axis, and then adjusting for the points location relative to
the uvw-origin. We also derive the following relationship for (u, v, w):

αu+ v + w = 0. (7)

To establish domains for u, v and w, we need to know the length of each axis inside the
triangular domain. The length of the u-axis, which we will call |~u|, is simply the height
of the triangle:

|~u| = s

√
1− α2

4
. (8)

To obtain the length of the w-axis, we consider the triangle formed by the axis in question
and the two congruent sides of the isosceles triangle. Using Pythagorean Theorem, we
calculate the length of the axis to be:

|~w| = αs

√
1− α2

4
. (9)

The v-axis is congruent to the w-axis, so from (8) and (9), we obtain the relation |~w| =
|~v| = α |~u|. The lengths of the axes are useful because they are also the interval lengths for
our domains on u, v, and w, and by finding one boundary for the interval, we immediately
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know the other. From the location of the origin in the uvw-plane and the triangle’s
vertices, we obtain the following bounds for the coordinates:

umax =
α

2
s tan (θ2),

umin = −s
√

1− α2

4
+
α

2
s tan (θ2),

wmax = αs

√
1− α2

4
− αs

2 cos (θ2)
,

wmin = − αs

2 cos (θ2)
,

vmin = wmin,

vmax = wmax.

Essentially, for every point inside the triangle, u ∈ [umin, umax], v ∈ [vmin, vmax], and
w ∈ [wmin, wmax] must all be satisfied.

2.2 Transformed Laplacian Equation

Using the coordinate system presented above, we use separation of variables as our pri-
mary solution method starting with:

∇2T −K2T = 0. (10)

We assume that T has the form f(u) · g(v − w). We use (v − w) because it gives us an
orthogonal coordinate system. First, we need to find our new Laplacian for this space.
We apply the change of variables σ = u and η = (v−w), placing those variables into the
Laplacian to derive:

f(η) = f
(

2 cos(θ2)
(
x− α

s

))
, (11)

f(σ) = f
(α

2
s tan(θ2)− y

)
. (12)

Using the Chain Rule we get the following transformation of the Laplacian from x- and
y-coordinates to σ- and η-coordinates:

∇2T (x, y) =
∂2T

∂y2
+
∂2T

∂x2
=
∂2T

∂σ2
+ (4− α2)

∂2T

∂η2
= ∇2T (σ, η). (13)

Now that we have an orthogonal coordinate system we solve our problem through the use
of separation of variables. We assume a solution of the form T = f(σ)g(η), substituting
this into (10) and using (13) to obtain:

1

f(σ)

∂2f

∂σ2
(σ) + (4− α2)

1

g(η)

∂2g

∂η2
(η) +K2 = 0. (14)

The first two parts of (14) are only in terms of σ and η respectively. K2 is a constant, so
we know that the only way for the sum of the three parts to be zero is if the individual
parts equal constants:

1

f(σ)

∂2f

∂σ2
(σ) = −A2, (15)
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1

g(η)

∂2g

∂η2
(η) = −B2. (16)

This gives us the relation K2 = A2 +(4−α2)B2. We can now solve each one-dimensional
eigenvalue problem:

∂2f

∂σ2
(σ) + A2f(σ) = 0, (17)

∂2g

∂η2
(η) +B2g(η) = 0. (18)

2.3 Symmetric Solutions for a General Isosceles Triangle

Following McCartin’s method, we explore two types of solutions to (10): symmetric and
anti-symmetric. We define Ts(u, v, w) to be the solution symmetric about the u-axis
and Ta(u, v, w) to be the solution anti-symmetric about the u-axis, according to these
equations:

Ts(u, v, w) = T (u,v,w)+T (u,w,v)
2

, (19)

Ta(u, v, w) = T (u,v,w)−T (u,w,v)
2

. (20)

For now, we only consider symmetric solutions. The anti-symmetric solutions follow the
same method, and simply involve sine functions in one of the coordinate directions.

2.3.1 Homogeneous Boundary Conditions in u

Since we have homogeneous boundary conditions, Ts must vanish when u = umin and
u = umax while also satisfying the Laplacian equations. Based on these homogeneous
conditions we look for solutions Ts = f(u)g(v − w) that are a product of trigonometric
functions. To make it symmetric about the u-axis, g(v−w) must be the cosine function.
Similarly for the anti-symmetric case we would need sine functions. To force homogeneous
conditions on the boundaries for u, f(u) must be the sine function centered around
u = umin. Hence,

Ts = sin(A(u− umin)) cos(B(v − w)), (21)

which vanishes when u = umin. In order for the function to vanish along u = umax, we
substitute it into the equation to find:

Ts = sin(A(umax − umin)) cos(B(v − w)) = 0,

→ 0 = sin(A(umax − umin)),

→ πl = (A(umax − umin)),

→ A =
πl

s
√

1− α2

4

, (22)

where l is some integer. As a result, we can express the symmetric solution as:

Ts = sin

 πl

s
√

1− α2

4

(u− umin)

 cos [B(v − w)] . (23)
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2.3.2 The Other Homogeneous Boundary Conditions

Now we enforce the other boundary conditions, in which Ts must vanish along the lines
v = vmax and w = wmax. However, the symmetry of the isosceles triangle and the evenness
of the cosine function lets us conclude that satisfying the homogeneous conditions on one
side, say v = vmax, would also satisfy the conditions on the other side. Hence, we only
focus on the condition v = vmax:

v = vmax → αu+ v + w = αu+ vmax + w = 0,

→ −w = αu+ vmax,

→ v − w = (vmax) + (αu+ vmax),

→ v − w = αu+ 2vmax. (24)

The above equation describes the value of (v − w) along v = vmax boundary in terms of
the independent variable u, which leads to interesting simplifications.

However, a few expressions need to be rewritten first. Since 2 sin(θ2) = α also implies
that 2 cos(θ2) =

√
4− α2 and, by the definition of the tangent function, tan(θ2) = α√

4−α2 ,
we can rewrite umin as:

umin = −s
2

√
4− α2 +

α2s

2
√

4− α2
,

= −s
(√

4− α2

2
− α2

2
√

4− α2

)
,

= −s
(

(4− α2)− α2

2
√

4− α2

)
,

= −s
(

2− α2

√
4− α2

)
. (25)

Furthermore, similar substitutions can be made to vmax, leading to:

vmax =
αs

2

√
4− α2 − αs√

4− α2
,

= αs

(√
4− α2

2
− 1√

4− α2

)
,

= αs

(
(4− α2)− 2

2
√

4− α2

)
,

= αs

(
2− α2

2
√

4− α2

)
,

= −α
2
umin. (26)

The final expression in (26) is the most intriguing because it directly relates umin and
vmax with a linear function based on α. To check the veracity of this relation, one can
substitute the α-value for an equilateral triangle (α = 1) and confirm that the maximum
value for v is indeed equal to the minimum of u multiplied by the quantity −α

2
.
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More importantly, the expression in (26) allows us to simplify (v − w) along the
v = vmax boundary found in Equation (24):

v − w = αu+ 2vmax,

= αu+ 2
(
−α

2
umin

)
,

= α(u− umin). (27)

This allows us to express the symmetric solution in (23) along this boundary all in terms
of u:

Ts = sin

 πl

s
√

1− α2

4

(u− umin)

 cos [B1α(u− umin)] . (28)

However, Equation (28) does not solve the boundary conditions; it only expresses the
general form of the solution along the line v = vmax. No value of B1 would lead to Ts
vanishing along this line.

We know that Equation (28) solves the original boundary condition, so we can use a
linear combination of these solutions to create a symmetric solution that vanishes along
the necessary boundary. Of course, we need to create unique expressions of A and B for
each added solution, but these expressions will be very similar in structure and still have
to satisfy K2 = A2 + (4− α2)B2.

First, we use two versions of Equation (23) and derive the following expression for
the solution along the boundary v = vmax:

Ts = sin

 πl

s
√

1− α2

4

(u− umin)

 cos [B1α(u− umin)]

+ sin

 πm

s
√

1− α2

4

(u− umin)

 cos [B2α(u− umin)] . (29)

Using the trigonometric identity

sinx cos y =
1

2
(sin(x+ y) + sin(x− y)), (30)

Equation (29) can be rewritten as the following:

Ts =
1

2

sin

 πl

s
√

1− α2

4

+B1α

(u− umin)

+ sin

 πl

s
√

1− α2

4

−B1α

(u− umin)


+

1

2

sin

 πm

s
√

1− α2

4

+B2α

(u− umin)

+ sin

 πm

s
√

1− α2

4

−B2α

(u− umin)

 .

(31)
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In order for this new version of the symmetric solution to vanish for all values of u, one
of the sine functions involving B1 must equal the negative of a sine function involving
B2. It should be noted that if both sine functions involving B1 canceled, then Equation
(31) effectively reduces to the single solution form found in (28), which does not vanish.
Hence, we need only to consider the pairings of B1 functions and B2 functions.

Two distinct systems of equations arise when requiring that Ts vanish. One system
is:

πl

s
√

1− α2

4

+B1α = −

 πm

s
√

1− α2

4

+B2α

 ,

πl

s
√

1− α2

4

−B1α = −

 πm

s
√

1− α2

4

−B2α

 , (32)

while the other system could look like this:

πl

s
√

1− α2

4

−B1α = −

 πm

s
√

1− α2

4

+B2α

 ,

πl

s
√

1− α2

4

+B1α = −

 πm

s
√

1− α2

4

−B2α

 . (33)

Regardless of which system one chooses, the solutions are essentially the same: l = −m
and |B1| = |B2|, where B1 and B2 have opposite signs to solve the system in (32) or have
the same signs to solve the system in (33). However, when either solution is substituted
back into Equation (29), we obtain Ts = 0, the trivial solution. When reaching this
step in his own paper, McCartin does not directly address the two possible systems of
equations. However, neither system leads to any useful solutions, so his not mentioning
the multiple systems here is understandable.

Hence, we consider the symmetric solution involving a third version of the expression
in (23). We find values of B1, B2, and B3 that satisfy the boundary conditions along
v = vmax:

Ts = sin

 πl

s
√

1− α2

4

(u− umin)

 cos [B1α(u− umin)]

+ sin

 πm

s
√

1− α2

4

(u− umin)

 cos [B2α(u− umin)]

+ sin

 πn

s
√

1− α2

4

(u− umin)

 cos [B3α(u− umin)] , (34)
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with the condition:

K2 =

 πl

s
√

1− α2

4

2

+ (4− α2)B2
1 ,

=

 πm

s
√

1− α2

4

2

+ (4− α2)B2
2 ,

=

 πn

s
√

1− α2

4

2

+ (4− α2)B2
3 . (35)

Again, we use the identity in Equation (30) to rewrite (34) as:

Ts =
1

2

sin

 πl

s
√

1− α2

4

+B1α

(u− umin)

+ sin

 πl

s
√

1− α2

4

−B1α

(u− umin)


+

1

2

sin

 πm

s
√

1− α2

4

+B2α

(u− umin)

+ sin

 πm

s
√

1− α2

4

−B2α

(u− umin)


+

1

2

sin

 πn

s
√

1− α2

4

+B3α

(u− umin)

+ sin

 πn

s
√

1− α2

4

−B3α

(u− umin)

 .

(36)

To make Equation (36) vanish for all values of u, we create a system of three equations
obtained by matching one sine function of B1 to the negative of a function of B2, the
other function of B1 to the negative of a function of B3, and the remaining function of
B2 to the negative of the remaining function of B3. Any other matching scheme would
reduce the problem to (28) or (29), which we have already shown leads to trivial or
nonexistent solutions.

However, this scheme actually leads to eight different systems of equations that should
lead to essentially the same solutions, with the possibility of having some B-value solu-
tions being negative in some systems but positive in others. We will not list all eight
systems and instead present one possible system from which we can solve for B1, B2, and
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B3:

πl

s
√

1− α2

4

+B1α = −

 πm

s
√

1− α2

4

−B2α

 ,

πm

s
√

1− α2

4

+B2α = −

 πn

s
√

1− α2

4

−B3α

 ,

πn

s
√

1− α2

4

+B3α = −

 πl

s
√

1− α2

4

−B1α

 . (37)

Adding these three equations together and grouping terms yields the following solvability
condition:

l +m+ n = 0. (38)

The equation in (38) allows us to eliminate one of these variables by letting l = −(m+n),
for example, and writing the symmetric solution solely in terms of m and n.

It should also be noted that the solvability condition in Equation (38) does not depend
on α or any other geometric constant, meaning that this condition does not come from
the geometry of the coordinate system.

Returning to the task of solving the system in (37) for B1, B2, and B3, we notice
that any attempt to solve it would always reduce to the solvability condition. However,
from the equations in (35), we can determine more equations involving B1, B2, and B3

by simple algebra. Our complete system of equations becomes the following:

B1 −B2 =
2πn

αs
√

4− α2
,

B2 −B3 =
2πl

αs
√

4− α2
,

B3 −B1 =
2πm

αs
√

4− α2
,

B1 +B2 =

(
2πα

s(4− α2)3/2

)
(l −m),

B2 +B3 =

(
2πα

s(4− α2)3/2

)
(m− n),

B3 +B1 =

(
2πα

s(4− α2)3/2

)
(n− l). (39)

This is where the process appears to break down. We have six equations for three
unknown parameters, making this an over-determined system that is ultimately unsolv-
able. McCartin appears to avoid this issue in [5] by simply selecting two of the equations
that have the same pair of unknown parameters, such as (B1 − B2) and (B1 + B2), and
solving for them. As we will show, this reduced system yields consistent expressions for
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the B values in the equilateral triangle, so McCartin’s choice does not invalidate his so-
lutions. However, when we emulate this procedure for our generalized isosceles triangle,
this process leads to inconsistent solutions.

To see why these solutions are inconsistent, we show what solutions can be obtained,
first adding or subtracting the equations for (B1 − B2) and (B1 + B2) to find values for
B1 and B2:

(B1 +B2) + (B1 −B2) = 2B1 =
2πα(l −m)

s(4− α2)3/2
+

2πn

sα
√

4− α2
,

(B1 +B2)− (B1 −B2) = 2B2 =
2πα(l −m)

s(4− α2)3/2
− 2πn

sα
√

4− α2
.

Dividing by 2 and factoring yields:

B1 =
π

s
√

4− α2

(
α

4− α2
(l −m) +

n

α

)
, (40)

B2 =
π

s
√

4− α2

(
α

4− α2
(l −m)− n

α

)
. (41)

Applying this process to the equations for (B3 −B1) and (B3 +B1) yields the following
solutions for B1 and B3:

B1 =
π

s
√

4− α2

(
α

4− α2
(n− l)− m

α

)
, (42)

B3 =
π

s
√

4− α2

(
α

4− α2
(n− l) +

m

α

)
, (43)

and again to equations for (B2−B3) and (B2 +B3) yields the following solutions for B2

and B3:

B2 =
π

s
√

4− α2

(
α

4− α2
(m− n) +

l

α

)
, (44)

B3 =
π

s
√

4− α2

(
α

4− α2
(m− n)− l

α

)
. (45)

For each of the unknown eigenvalues, we have two possible expressions which do not
appear to match each other. This result leads us to a crucial question: are these two
expressions equal to each other?

2.4 Triangles with Consistent Solutions

From the previous section, we found that there are two possible expressions for B1 based
on which equations we choose to solve. However, it is possible that there exists values of α
that make both expressions consistent for all triplets (l,m, n) that satisfy the solvability
condition in (38). To find such values, we subtract Equation (42) from Equation (40)
and solve for α:

π

s
√

4− α2

((
α

4− α2
(l −m) +

n

α

)
−
(

α

4− α2
(n− l)− m

α

))
= 0,
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α

4− α2
((l −m)− (n− l)) =

−1

α
(n− (−m)),

α

4− α2
(2l − (m+ n)) =

−1

α
(m+ n).

Applying the solvability condition in (38) yields:

3αl

4− α2
=

l

α
,

3α2l = (4− α2)l,

4α2l = 4l,

α2 = 1,

α = 1. (46)

The same results in (46) can be obtained for B2 and B3, meaning that α must be equal
to one. Thus, the only triangle that yields consistent symmetric solutions for all B
parameters is the equilateral triangle, and when we substitute (α = 1), we obtain the
same results as in [5].

3 Considered Methods for Non-Equilateral Trian-

gles

Even though our analysis shows that McCartin’s method only appears to apply to equi-
lateral triangles, the real purpose of our investigation was to find practical methods of
solving the Helmholtz equation in any triangle. Intuitively, we should be able to find
solutions in more triangles than equilateral triangles, even if we have to restrict our do-
main to just the triangle itself instead of R2. In fact, McCartin even shows in [5] how
purely anti-symmetric solutions in an equilateral triangle form a complete set of solutions
in a 30-60-90 triangle. The limitations of his method does not necessarily preclude the
existence of solutions in other types of polygons, only the existence of solutions of the
form in (21). As a result, we explore other approaches to this problem, allowing for the
existence of solution sets with alternative forms.

3.1 Criteria for the Existence of Complete Solutions

For us, a complete set of solutions is defined as a set of solutions solving Laplace’s equation
in the triangle that can create a Fourier series for any function defined on R2, as in, the
solutions can be individually extended outside of the triangle. For McCartin, he assumes
solutions that are either symmetric or anti-symmetric with respect to an altitude of the
equilateral triangle and uses Lamé’s Theorem to show how any function defined in the
equilateral triangle can be expressed as a linear combination of these solution sets. He
then proved that solutions of these types can be extended to domains outside of the
equilateral triangle. The intriguing part about this second part is that he did not need
to know the actual equation in order to prove extendibility. In fact, a graphical proof
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will suffice to show if symmetric or anti-symmetric solutions can be extended outside of
the triangle, provided that the triangle meets meets certain criteria.

The first criteria is the ability to tile the entire plane, but only in a specific manner.
While it is possible to tile the plane using any triangle (reflections about the midpoint
of any side yields a parallelogram, which tiles the plane with translations), extensions
of the solutions in the triangle can only be made through anti-symmetric reflections
over an entire side of the triangle, not through rotation, translation, or reflection about
a single point. The reason behind this requirement is to preserve the continuity of the
function and its derivatives, which we can only guarantee for solutions with homogeneous
boundary conditions if we use anti-symmetric reflections. (It turns out, with Neumann
conditions, we must use symmetric reflections, but that it outside of our current field of
inquiry.)

Figure 3: Extensions of Symmetric Solutions of the 30-30-120 Triangle

Regardless of the motivation, this restriction severely reduces the number of triangles
that we need to consider. To find such a triangle, we start with one of the finite number
of polygons known to tile the plane through reflections and instead tile that area with
smaller triangles. For example, an equilateral triangle tiles the plane through reflections,
and since two congruent 30-60-90 triangles form an equilateral triangle through reflec-
tions, we can conclude that 30-60-90 triangle can tile the plane. Similarly, a square can
easily be shown to tile the plane using any kind of reflection about one of its sides, and
since an isosceles right triangle of any size can easily cover a square, we can conclude
that these triangles could have extendable solutions.

However, the ability to tile the entire plane in this manner does not guarantee com-
pleteness. Reflecting over a side of the triangle under homogeneous conditions creates an
anti-symmetric re-orientation of the solution. For the triangle T and any point t ∈ T ,
if f(t) is the value of the solution function at t and t′ is the reflection of t about a side
of T , then f(t′) = −f(t). However, if different reflections overlap themselves in such a
way that a point with positive value lies on a point with a negative value that is equal
in magnitude, they will zero each other out, making the extended solution trivial.
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To illustrate this, we consider the 30-30-120 triangle, which we know to tile the plane
because it is the combination of two 30-60-90 triangles joined along their shortest edge.
Solutions which are anti-symmetric are simply an extension of these 30-60-90 triangles
with homogeneous conditions; however, symmetric solutions are needed to obtain a com-
plete solution set so that we can have functions that do not need to be zero along the
altitude. Reflections of a symmetric solution appear in Figure 3. The bold lines out-
line the original triangle, and the “+” and “−” signs illustrate the symmetry about the
dashed line within each triangle and the anti-symmetry of reflecting about an edge of
the triangle. The circled minus signs show why a symmetric solution cannot exist in the
30-30-120 triangle. Anti-symmetry must exist about solid lines, as in a plus and a minus
on each side, but these minus signs violate that condition, making symmetric solutions
inconsistent and a complete solution set impossible. Through this analysis, we actually
were able to determine which triangles could have complete solution sets: the equilateral
triangle, the 30-60-90 triangle, and the isosceles right triangle.

McCartin actually addresses in [7] the concept of which domains in the R2 plane can
have complete trigonometric solutions. He presents geometric arguments showing that
the only polygonal domains capable of having complete trigonometric solutions with ei-
ther homogeneous Dirichlet or Neumann conditions are the square, the rectangle, and the
three triangles mentioned above. The rectangle and square have standardized solution
sets that can be found in any partial differential equation textbook, and the equilateral
triangle and 30-60-90 triangle have solution sets given in [5] and [4]. However, McCartin
does not present solutions for the isosceles right triangle, and as indicated above, our
application of McCartin’s method did not prove to be applicable to non-equilateral tri-
angles. Instead another method developed by Milan Prager proved to be extendable to
isosceles right triangles, and we present this method in the next section.

4 Prager’s Method: Adaptation to Isosceles Right

Triangles

Prager in [9] formulates solutions to Laplace’s equation under homogeneous Dirichlet
conditions for the equilateral triangle and the 30-60-90 triangle by “folding” a rectangle
with sides of length 1 and

√
3 into the appropriate triangle. However, the folding can be

reversed using reflections, so solution sets in either the triangle or the rectangle can be
transformed into a solution set in the other two-dimensional region.

Since an isosceles right triangle can be reflected over it’s hypotenuse to form a square,
we infer that Prager’s method could be easily applied to find a complete solution set for
the isosceles right triangle. What follows is the results of applying Prager’s method to
the isosceles right triangle.

4.1 Coordinate System and Function Transformations

We begin our application of Prager’s method by defining our geometry in R2, which ap-
pears in Figure 4. While McCartin’s method used symmetry about one of the triangle’s
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altitudes, Prager’s method simply uses one where the triangle is embedded into a rect-
angle through reflections about a side of the triangle. Our ultimate goal is to determine

Figure 4: Coordinate System for Prager’s Method

a set of functions u ∈ L2(T1) that solve our equation and boundary conditions, where
T1 is the isosceles right triangle with vertices at (0, 0), (1, 0), and (0, 1). We then use a
transformation known as a prolongation, P, of the function from points in T1 to points
in the square S = (0, 1)× (0, 1). This transformation is obtained by reflecting T1 over its
hypotenuse to create anti-symmetry in T2. Thus, we can define the corresponding points
by:

x1 = ξ, y1 = η,

x2 = 1− η, y2 = 1− ξ.

Prager also uses the notational shorthand Bi = (xi, yi) ∈ Ti for points that correspond
to each other through reflection, as well as saying that B = (ξ, η) ∈ T1. For a more
comprehensive description of this notation, see [9]. Also, the prolongation of the function
u ∈ L2(T1) is defined as:

Pu(Bi) = ciu(Bi), on Ti (47)

where c1 = 1 and c2 = −1.
Just as we can extend a function on T1 onto S, we can also transform a function

v ∈ L2(S) onto T1 using a folding transformation, F. This folding transformation is
essentially the opposite of the prolongation transformation, since it takes the square S
and folds it across the hypotenuse of T1. The expression for this transformation is as
follows:

Fv(B) =
2∑
i=1

civ(Bi). (48)

Note that in (48), we are evaluating the value of F[v] at points B ∈ T1.
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4.2 Significance of the Transformations

Of the two transformations presented in (47) and (48), the folding transformation appears
to be the most useful. Why? First, let the function v ∈ L2(S) satisfy Helmholtz’s
equation on the square with homogeneous Dirichlet boundary conditions, as in,

∇2v = λv, (49)

where v = 0 on the edges of the square. We now apply the folding transformation and
see what we can conclude about Fv ∈ L2(T1):

∇2(Fv) = ∇2

(
2∑
i=1

civ(Bi)

)
=

2∑
i=1

∇2 (civ(Bi), )

=
2∑
i=1

ci∇2v(Bi) =
2∑
i=1

ciλ · v(Bi),

= λ(v(B1)− v(B2)) = 2λv(B). (50)

Thus, Fv is also an eigenfunction of the Laplace operator. Notice that in (50), we can
substitute v(B2) = −v(B) because of the anti-symmetric reflection.

If v = 0 along the edges of the square, then Fv = 0 along the legs of the triangle
since the folding transformation would only be adding up zeros. Along the hypotenuse
of the triangle, we know that v(B1) and v(B2) are both equal to v(B), so the folding
transformation of the function evaluates to:

Fv(B) =
2∑
i=1

civ(Bi) = v(B1)− v(B2) = v(B)− v(B) = 0. (51)

Hence, we can conclude that Fv is zero along all three edges of the isosceles right tri-
angle, so it satisfies the homogeneous boundary conditions. Furthermore, because these
transformations are essentially equivalent to ones used by Prager we can conclude that
Fv must satisfy Laplace’s equation for the same reasons that Prager presents in [9].

4.3 Base Functions for the Fourier Series

In order to find the base functions for the Fourier series on the isosceles right triangle, we
can take the base functions for the square and simply apply the folding transformation
to them. The homogeneous boundary conditions for the square can be described by the
following expression:

v(x = 0, y) = v(x = 1, y) = v(x, y = 0) = v(x, y = 1) = 0. (52)

The canonical eigenfunctions are known to be:

vk.l = sin kπx sin lπy, (53)

where k = 1, 2, 3, . . . and l = 1, 2, 3, . . . form the domains for the eigenvalues, kπ and lπ
[2]. We know this expression satisfy the boundary conditions because sin 0 = 0 and for
any integer m, sinmπ = 0.
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After we apply the transformation in (48) and use the trigonometric identity

sin (a− b) = sin a cos b− cos a sin b, (54)

we get the following expression for the base function of the isosceles right triangle:

Fvk,l = sin kπx sin lπy − sin kπ(1− y) sin lπ(1− x),

= sin kπx sin lπy − (sin kπ cos kπy − cos kπ sin kπy)

· (sin lπ cos lπx− cos lπ sin lπx) . (55)

Because k and l are integers, we can say

sin kπ = 0, sin lπ = 0,

cos kπ = (−1)k, cos lπ = (−1)l. (56)

Equation (55) becomes:

Fvk,l = sin kπx sin lπy −
(
0− (−1)k sin kπy

) (
0− (−1)l sin lπx

)
,

= sin kπx sin lπy + (−1)k+l+1 sin kπy sin lπx. (57)

We now have an expression for the eigenfunctions for the isosceles right triangle, which
means we have discovered the basic eigenstructure of this triangle!

4.4 Plots of Eigenfunctions

Using the expression in Equation (57), we can actually plot the eigenfunctions for certain
values of k and l and illustrate their features.

Before we actually produce plots, we mention that some functions in (57) would be
trivial despite being in the theoretical domain for values of k and l. First of all, switching
the values of k and l would not yield significantly different plots because of the symmetry
of the triangle, as in, the plot for (k, l) = (2, 3) would just be the plot for (k, l) = (3, 2)
reflected about the line y = x.

Secondly, when k = l, Equation (57) becomes a complicated expression for zero, so
we omit such plots. This is actually a more interesting result then one thinks. Typically,
when k = l, the square is divided into smaller squares, but because of the inherent sym-
metry of this action, the folding transformation actually annihilates the entire function.
As a result, we cannot have a (1, 1)-mode, but as we will show, the unimodal structure
of this basic mode actually appears in the (1, 2)-mode.

The first two plots we present are perhaps the most simple, non-trivial functions
available: (k, l) = (1, 2) and (k, l) = (1, 3). These plots appear in Figures 5 and 6.
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Figure 5: (1, 2)-Mode for an Isosceles Right Triangle

Figure 6: (1, 3)-Mode for an Isosceles Right Triangle

In both of these figures, the functions clearly satisfy the homogeneous Dirichlet bound-
ary conditions. Furthermore, the (1, 2) mode is a symmetric mode, and the (1, 3) mode
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is anti-symmetric. This means that any function u ∈ L2(T1) can be decomposed into the
sum of symmetric and anti-symmetric modes. Additional images can be found in the
appendix.

5 Conclusion

In this paper we extended a solution method for the eigenvalue problem in a equilateral
triangle to general isosceles triangles. However, we did not find solutions, instead we
managed to show that the solution method in [5] did not extend to general isosceles
triangles. We showed that the problem could be solved in a right isosceles triangle
and investigated a method of folding rectangles to develop solutions. Coupling Prager’s
method with our work on general isosceles triangles and through the use of a geometric
argument, we were able to show that the only isosceles triangles for which there are
complete solutions are the equilateral triangle and the right isosceles triangle.
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A Additional Images

(a) (1, 5)-Mode for an Isosceles Right Triangle (b) (2, 4)-Mode for an Isosceles Right Triangle

(c) (2, 6)-Mode for an Isosceles Right Triangle (d) (4, 6)-Mode for an Isosceles Right Triangle
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