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Figure 13. Actual and simulated course of therapy.  Ten simulations arerun with the results averaged in 
space (the same set of resection cavities is used for all simulations).  The left column of panels gives the 
tumor at diagnosis and the two recurrent tumors.  The right column displays the simulated resection cavity 
and the actual resection cavity at two different times following surgery.  Two cavities are included to show 
how the cavities are deformed following surgery.  The first is the cavity immediately following resection, 
and the second is the cavity at some later time when significant deformation has occurred.This forces a 
compromise to be made when choosing a simulated cavity as the form must be fit as close as possible, 
while at the same time an equivalent amount of tumor tissue should be removed.  In addition, the cavity 
present when the tumor is recurring does not have the same form as it did following surgery.  This 
highlights the inherent difficulty in using a static brain geometry.  The bottom subfigure gives the final 
simulated and real tumors.
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Figure 3: Sample model output.

slightly to the left. All of this is due to the pressure from the expanding tumor, and

this behavior has been captured in the tumor model.



This model is still far from a quantitatively accurate predictor of glioma devel-

opment, but initial results appear promising. Specifically, the model of tumor mass-

effect used here is not tied to any single model of tumor growth, and therefore a

different model of tumor development can be used if it is observed to produce more

accurate results. For a discussion of future work and other improvements that may

be integrated into this model, see Section 5.

5 Remarks

As stated in Section 2, the model implemented here is only an initial approximation

of tumor behavior. In order to model the behavior of gliomas with more accuracy, it

is necessary to account for a multitude of other factors. Future areas of improvement

include, but are definitely not limited to, the dramatic importance of vascular de-

velopment, the various growth factors that motivate the growth and development of

tumor cells and associated vasculature, the tumor’s interaction with and subsequent

degradation of the extracellular matrix (ECM), the effects of growth, migration and

death due to crowding, and the effects of chemotherapy, radiotherapy, and other forms

of treatment.

Perhaps the most important area for development is to model the mass-effect that

occurs due to brain surgery, most importantly the resection of a developing tumor.

First of all, since the effects of gravity are not considered in the current model of tumor

mass-effect, we must develop a method of modeling the collapse of the resection cavity

after surgery. Furthermore, due to the fact that a linear model of tissue deformation
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has been shown to be inaccurate [13], a better model of brain deformation needs to

be implemented in general. Inaccuracy due to a simplified, linear model of cellular

deformation can be ignored, at least in early tumor development, because the extent

of the mass-effect is relatively small. However, after the resection of even a small

tumor, the patient’s brain experiences dramatic deformation in a very short time as

the resection cavity collapses. Therefore, we expect that a linear model of brain tissue

deformation will not provide an accurate method of modeling such an event.

Another potential area of improvement is tumor cell phenotype switch. For sim-

plicity, the model presented here treats this as a constant, yet it is believed that in

reality, phenotype switch of tumor cells occurs stochastically as well as in response

to crowding and other factors. As the density of proliferating cells reaches carrying

capacity, we expect the rate of conversion to migrating cells to increase. As mentioned

in Section 2, the Go or Grow Hypothesis has been relatively common in macro-level

models of tumor development since 1997, but the assumption that growth and mi-

gration in tumor cells is mutually exclusive is not universally accepted. Nevertheless,

models such as [7] have achieved numerically accurate results with a stochastic model

of phenotype change. Either way, this aspect of our model is in need of investigation.

Finally, it is expected that a finer mesh will increase resolution and hence accuracy.

We have developed a much more detailed domain, yet the code we have written to

calculate the finite element solution cannot yet be run on parallel processors (is not yet

MPI-aware). A version of this code is under development, which will make it possible

to calculate a better-resolution numerical solution where numerical convergence of

our results can be tested.
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Appendices

A Physical Parameters

Parameter Value Description Units Source
EWM 0.29008 Young’s modulus of white matter lb/in2 [8] p.6903
νWM 0.45000 Poisson’s ratio of white matter None [8] p.6903
EGM 0.36260 Young’s modulus of grey matter lb/in2 [8] p.6903
νGM 0.48500 Poisson’s ratio of grey matter None [14] p.404
ECSF 0.07250 Young’s modulus of spinal fluid lb/in2 [8] p.6903
νCSF 0.48900 Poisson’s ratio of spinal fluid None [17] p.45
EFalx 14.5040 Young’s modulus of falx lb/in2 [10] p.581
νFalx 0.50000 Poisson’s ratio of falx None Inc. a

EGBM 0.08363 Young’s modulus of tumor lb/in2 Exp. b

νGBM 0.48500 Poisson’s ratio of tumor None [14] p.404
Dv,WM 3.10× 10−6 Diff. of proliferating cells in WM in2/day [7] p.16
Dv,GM 6.20× 10−7 Diff. of proliferating cells in GM in2/day [7] p.16
Dv,CSF 1.55× 10−7 Diff. of proliferating cells in CSF in2/day [7] p.16
Du,WM 1.55× 10−4 Diff. of migrating cells in WM in2/day [7] p.16
Du,GM 3.10× 10−5 Diff. of migrating cells in GM in2/day [7] p.16
Du,CSF 1.55× 10−7 Diff. of migrating cells in CSF in2/day [7] p.16
ρ 0.200 Growth rate of of proliferating cells 1/day [7] p.16
κ 6.45× 106 Glioma carrying capacity cells/in2 [7] p.16
β 10−4 Rate of phenotype switch 1/in2 [7] p.16

aWe assume that this tissue is incompressible
bThis parameter is experimentally approximated using numerical results.
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B Derivation of Stiffness and Shape Matrices

As summarized in Sections 3.1 and 3.3, we have the following weak formulation of a
system of partial differential equations, which we hope to solve for u and v∫

Ω

w
∂v

∂t
dΩ = Dv

∫
Ω

(
∂w

∂x

∂v

∂x
+
∂w

∂y

∂v

∂y

)
dΩ

+ ρ

∫
Ω

wv

(
1− u+ v

κ

)
dΩ− β

∫
Ω

wu dΩ

∫
Ω

w
∂u

∂t
dΩ = Du

∫
Ω

(
∂w

∂x

∂u

∂x
+
∂w

∂y

∂u

∂y

)
dΩ + β

∫
Ω

wu dΩ.

Recall that w can be any function that satisfies the same boundary conditions as
u and v, namely, u = v = ∂u

∂n
= ∂v

∂n
= 0. To integrate this system numerically,

we represent the exact solutions u and v with respect to a finite basis of compactly
supported linear functions.

We begin by restricting our attention to a single triangular element Ωe, and later
we will generalize to the entire domain. We choose these basis functions to represent
linear interpolation of the solution. That is, we define the three functions

f1(x, y) =
1

2A
((b1c2 − c1b2) + (b2 − c2)x+ (c1 − b1)y)

f2(x, y) =
1

2A
((c1a2 − a1c2) + (c2 − a2)x+ (a1 − c1)y)

f3(x, y) =
1

2A
((a1b2 − b1a2) + (a2 − b2)x+ (b1 − a1)y)

that are only supported in Ωe, where a = (a1, a2), b = (b1, b2), and c = (c1, c2) are the
three element vertices and A is the element area.

Note that these satisfy the condition that if dj is one of the vertices of Ωe, then
fi(dj) = δi,j, the Kronecker Delta function. Furthermore,

∑3
i=1 fi = 1 as desired. 5

Therefore, we use the approximate linear solutions

ũ =
3∑
i=1

fi(x, y)ui and ṽ =
3∑
j=1

fj(x, y)vj,

5This is easy to check, due to the fact that A = 1
2 det

1 a1 a2

1 b1 b2

1 c1 c2

.
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where ui and vi is the value of u and v at node i. More simply,

ũ =
(
f1 f2 f3

)u1

u2

u3


ṽ =

(
f1 f2 f3

)v1

v2

v3

 .

We then substitute these equations into the above defined system. For the function
w, we use the three shape functions as the three test functions, which are necessary
to solve for three unknowns. That is,

w =

f1

f2

f3

 .

Substituting these equations into our original system, we get the following system
of integrals:

Z
Ωe

0@f1f2
f3

1A0@v̇1
v̇2
v̇3

1A dΩe = Dv

Z
Ωe

0BB@
0BB@
∂f1
∂x
∂f2
∂x
∂f3
∂x

1CCA“ ∂f1∂x ∂f2
∂x

∂f3
∂x

”0@v1
v2
v3

1A +

0BB@
∂f1
∂y
∂f2
∂y
∂f3
∂y

1CCA“ ∂f1∂y ∂f2
∂y

∂f3
∂y

”0@v1
v2
v3

1A
1CCA dΩe

+ ρ

Z
Ωe

0@f1f2
f3

1A`f1 f2 f3
´0@v1

v2
v3

1A
0BB@1−

`
f1 f2 f3

´0BB@
u1+v1
κ

u2+v2
κ

u3+v3
κ

1CCA
1CCA dΩe

− β

Z
Ωe

0@f1f2
f3

1A`f1 f2 f3
´0@u1

u2
u3

1A dΩe

Z
Ωe

0@f1f2
f3

1A0@u̇1
u̇2
u̇3

1A dΩe = Du

Z
Ωe

0BB@
0BB@
∂f1
∂x
∂f2
∂x
∂f3
∂x

1CCA“ ∂f1∂x ∂f2
∂x

∂f3
∂x

”0@u1
u2
u3

1A +

0BB@
∂f1
∂y
∂f2
∂y
∂f3
∂y

1CCA“ ∂f1∂y ∂f2
∂y

∂f3
∂y

”0@u1
u2
u3

1A
1CCA dΩe

+ β

Z
Ωe

0@f1f2
f3

1A`f1 f2 f3
´0@u1

u2
u3

1A dΩe.

Simplifying somewhat, we get the linear system

[Me] [v̇]t = Dv [Ke] [v]t − ρ [Me]

[
v

(
1− v + u

κ

)]t
− β [Me] [u]t

[Me] [u̇]t = Du [Ke] [u]t + β [Me] [u]t ,
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where the matrices are defined as

[Me] =

∫ f1f1 f1f2 f1f3

f2f1 f2f2 f2f3

f3f1 f3f2 f3f3


[Ke] =

∫  (∂f1

∂x
)2 + (∂f1

∂y
)2 ∂f1

∂x
∂f2

∂x
+ ∂f1

∂y
∂f2

∂y
∂f1

∂x
∂f3

∂x
+ ∂f1

∂y
∂f3

∂y
∂f2

∂x
∂f1

∂x
+ ∂f2

∂y
∂f1

∂y
(∂f2

∂x
)2 + (∂f2

∂y
)2 ∂f2

∂x
∂f3

∂x
+ ∂f2

∂y
∂f3

∂y
∂f3

∂x
∂f1

∂x
+ ∂f3

∂y
∂f1

∂y
∂f3

∂x
∂f2

∂x
+ ∂f3

∂y
∂f2

∂y
(∂f3

∂x
)2 + (∂f3

∂y
)2

 .

It is not hard to calculate, with a little simple calculus, the explicit forms of these
matrices, in terms of a, b, and c. Generalizing to the entire domain, we construct
Equations (16) and (17), where the entire shape and stiffness matrices [M ] and [K]
are given by

[M ] =
n∑
e=1

[Me]

[K] =
n∑
e=1

[Ke] .

Note that addition is performed by adding the entries of each matrix corresponding to
the same node. For a more thorough explanation and excellent examples, see [9, 11].
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