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Abstract

A mathematical modeling for the interaction of blood flow with the arterial wall
surrounded by cerebral spinal fluid is developed. The blood pressure acting on the
inner arterial wall is modeled using a Fourier Series, the arterial wall is modeled
using a spring-mass system, and the surrounding cerebral spinal fluid is modeled
via a simplified Navier-Stokes equation. The resulting coupled system of partial
differential equations for this fluid structure interaction with appropriate boundary
conditions are solved first analytically using Laplace Transform and then numeri-
cally using an implicit finite difference scheme. The solutions are also investigated
using computational tools. An application of the model studied to intracranial
saccular aneurysms is also presented.

1. Introduction

Fluid structure interaction models can be used to gain insight into a number of
different applications, such as the interaction between airflow and wings of micro-
air vehicles and blood pressure interaction with arterial walls [5, 1, 18]. This paper
focuses on modeling an intracranial saccular aneurysm, which is a focal dilatation
of an arterial wall within the brain. Between 2 and 5 % of the population harbor
aneurysms within their brains and 15 to 30% of those that harbor at least one
aneurysm have multiple lesions [3, 7, 10].

While there have been a number of papers written about intracranial saccular
aneurysm, specific mechanisms responsible for their genesis, enlargement, and rup-
ture remain unknown [12, 8, 14, 15]. It has been hypothesized that one of the
reasons for a saccular aneurysm to enlarge and rupture is because the dynamic be-
havior of the arterial wall is unstable because of the pulsatile blood flow [9, 17, 13].
To investigate this hypothesis, we will build a one dimensional coupled model of
an intracranial saccular aneurysm herein, that incorporates the interaction between
the blood pressure, the wall structure, and the cerebral spinal fluid that surrounds
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the aneurysm. While this one dimensional model may be a simplification of a
complex biological problem, it does give us insight to what is happening with the
interactions.

Toward this end, we derive a coupled system of equations of motion for an idealized
subclass of lesions. The blood pressure acting on the inner arterial wall is modeled
using a Fourier Series. The arterial wall is modeled using a spring-mass system. The
surrounding cerebral spinal fluid is modeled via a simplified Navier-Stokes equation.
We then use both analytical and numerical methods to derive exact solutions that
will examine the response of this subclass of lesions against imposed pulsatile blood
flow.

2. Mathematical Models and Background

The problem we consider models three components of the intracranial saccular
aneurysm - the blood pressure acting on the inside of the arterial wall, the structure
of the arterial wall, and the cerebral spinal fluid (CSF) that surrounds the aneurysm
(see figure 1a). To derive the one dimensional model, we consider a line that runs
from within the aneurysm through the arterial wall and out into the CSF, as shown
in Figure 1b. We consider the point x = 0 to be where the outside wall and CSF
meet, with x > 0 to be moving away from the wall into the CSF, and x < 0 to be
moving through the wall and into the aneurysm. Next we outline individual models

Figure 1. Aneurysm with direction x shown

for the CSF, arterial wall, and the blood flow and explain how they will be coupled.

2.1. Model of the cerebral spinal fluid. To model the CSF, we consider the
following equation:

(1) ρvt + ρvvx + Px − µvxx = F.

Note that (1) may been seen as the one dimensional Navier-Stokes equation. Here
ρ is density, v(x, t) is the velocity of the fluid, P (x, t) is the pressure of the fluid, µ
is the viscosity of the fluid and F is the body force on the fluid. In order to solve
(1) analytically, we need to simplify our model. To do so, we make the following
assumptions: that the CSF is slightly compressible and inviscid, that there are no
external forces acting on the fluid, and that the nonlinear effects are negligible. The
last three (inviscid, no external forces, nonlinear negligible) simplifies eq (1) to:

(2) ρvt + Px = 0.
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Now notice that there are still two unknowns, the pressure and the velocity. By
using our assumption that the CSF is slightly compressible, we can use the state
equation for a slightly compressible mixture which is:

(3) ρP = ρeγ−1P (x,t)

where γ = ρc2, c is the speed of sound through the fluid. Taking the derivative of
ρP with respect to P gives

(4)
dρP

dP
=

(
ρ

γ

)
eγ−1P (x,t).

Substituting eq (3) into eq (4) gives:

(5)
dρP

dP
=

ρP

γ
.

The Law of Conservation of Mass gives:
∂ρP

∂t
= − ∂

∂x
(ρP v)(6)

= − ρP
∂v

∂x
− v

∂ρP

∂x
(7)

dρP

dP

∂P

∂t
= − ρP

∂v

∂x
− v

dρP

dP

∂P

∂x
(8)

by using the product rule and chain rule. Substituting eq (5) into eq (8) we get:
ρP

γ

∂P

∂t
= − ρP

∂v

∂x
− v

ρP

γ

∂P

∂x
.(9)

As γ is very large, the second term on the right hand side is very small compared
to the first, we can assume it is negligible. By integrating with respect to time, eq
(9) reduces to:

ρP

γ

∂P

∂t
= − ρP

∂v

∂x
(10)

We now introduce a new variable u(x, t) to be the displacement of the fluid. This
can be related to the fluid velocity through:

(11) u(x, t) =
∫ t

0
v(x, s) ds.

Using this relationship between u and v, we can now simplify eq (10) to:
ρP

γ

∂P

∂t
= − ρP

∂ut

∂x
(12)

ρP

γ

∂P

∂t
= − ρP

∂

∂x

∂u

∂t
(13)

ρP

γ
P = − ρP

∂u

∂x
(14)

P

γ
= − ux(15)

P = − ρc2ux.(16)

So we now have a relationship between the pressure and displacement. Using this
relationship and eq (11) simplifies (2) to:

vt = c2uxx(17)
ut = v(18)
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Note that together eqs (17) and (18) can be thought of as the standard wave
equation. What we are really interested in the movement of the wall, which is the
same as the movement of the fluid at the point x = 0. Thus by finding the solution
to eqs (17) and (18) at the point x = 0 for time t ≥ 0 we will know the movement
of the wall for all time after t = 0. To solve the partial differential equations, we
need two boundary conditions and two initial conditions. For initial conditions,
we assume that the CSF starts at rest and has no initial velocity, giving us the
equations

(19) u(x, 0) = v(x, 0) = 0.

The two boundary conditions will be developed in the governing equation of motion
section, after we develop models for the wall and blood pressure which is presented
next.

2.2. Model of the arterial wall. To model the arterial wall, we use a spring
and mass system, with the spring constant k and mass m. Figure 2 illustrates this
coupled system between the inner wall and outer wall. The force generated by this
system is given by k(xouterwall − xinnerwall) where xouterwall and xinnerwall are the
respective displacements of the inner and outer wall from equilibrium, which will
be described later in the governing equation of motion.

Figure 2. Spring and mass system

2.3. Model of the blood pressure. As blood pressure is considered to be pul-
satile it can be modeled by the Fourier series [4, 11, 16]:

(20) PBLOOD(t) = Pm +
N∑

n=1

(An cos(nωt) + Bn sin(nωt))

where Pm is the mean blood pressure, and An and Bn are the Fourier coefficients
for N harmonics, and ω is the fundamental circular frequency, which are available
in the literature [11].

2.4. Governing Equation of Motion. To solve the coupled system for the partial
differential equation (PDE) derived in eqs (17)-(18) we still need two boundary
conditions. Our first boundary condition, at the point x = 0, is derived from our
models for the wall and blood pressure. We do this by writing a force balance
equation at the point x = 0, where

(21) FTOTAL = FFLUID − FSPRING.

The total force FTOTAL is equal to mvt(0, t), where m is the mass of the wall, as shown
in Figure 2. The force of the fluid FFLUID is the pressure of the fluid times the area.
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Using the assumption that the fluid is slightly compressible allows us to rewrite
pressure in terms of displacement, giving us FFLUID = ρc2ux(0, t)a, where a is the
cross-sectional area. The force from the spring is FSPRING = k(xouterwall−xinnerwall).
Note that the displacement of the outer wall is u(0, t). For the interior wall, as it is
affected only by the blood pressure, it’s displacement is proportional to the blood
pressure. So the total force from the spring becomes

(22) FSPRING = ku(0, t)− aPBLOOD(t).

Thus by combining (20) and (22) we get the following boundary condition from
(21)

mvt(0, t) = aPm − ku(0, t) + ρc2aux(0, t) +
N∑

n=1

(aAn cos(nωt) + aBn sin(nωt)).

For the second boundary condition, we use the plane wave approximation, which
says that the waves from the wall will die down some long distance away from the
wall, which we call the point x = L. This is given by

v(L, t) = −cux(L, t).

Summarizing the various models developed in sections (2.1)-(2.4), we obtain the
following coupled fluid-structure interaction (FSI) problem:

vt = c2uxx(23)
ut = v(24)

u(x, 0) = v(x, 0) = 0(25)

mvt(0, t) = aPBLOOD(t)− ku(0, t) + ρc2aux(0, t)(26)
v(L, t) = − cux(L, t)(27)

where PBLOOD is given by (20).

Next, we will present an analytical solution to eqs (23)-(27).

3. Analytical Solution

In order to simplify our work, we will rewrite eqs (23)-(27) in terms of only u(x, t),
which gives us:

utt = c2uxx(28)
u(x, 0) = ut(x, 0) = 0(29)

mutt(0, t) = aPBLOOD(t)− ku(0, t) + ρc2aux(0, t)(30)
ut(L, t) = − cux(L, t)(31)

where PBLOOD is given by (20). Now, consider the Laplace Transform [6] of the
dispacement u(x, t) defined as:

L {u(x, t)} = U(x, s) =
∫ ∞

0
e−stu(x, t) dt.

We will take the following approach to solve (28)-(31). By taking the Laplace
Transform of (28)-(31), the PDE’s are transformed into ordinary differential equa-
tions (ODE’s) making it possible to solve for an exact solution for U(x, s) at the
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point x = 0. Then by taking the inverse Laplace Transform of U(0, s) we find the
exact solution for the movement of the outer wall u(0, t).

The Laplace Transform of the wave equation (28) is:

(32) s2U(x, s) = c2Uxx(x, s).

This ODE has the solution:

(33) U(x, s) = c1 cosh
(s

c
x
)

+ c2 sinh
(s

c
x
)

which is known up to the two constants, c1 and c2. To find them we first take the
Laplace Transform of the boundary condition at the point x = L (31) which gives

(34) sU(L, s) = −cUx(L, s).

Substituting (33) into (34) yields

c2 = −c1.

Next we take the Laplace transform of the boundary equation at the point x = 0
(30) which gives:

ms2U(0, s) =
aPm

s
− kU(0, s) + ρc2aUx(0, s)

+
N∑

n=1

(
aAn

(
s

s2 + (nω)2

)
+ aBn

(
nω

s2 + (nω)2

))
.(35)

Substituting (33) into (35) and we find

(36) U(0, s) =

aPm

s
+

N∑

n=1

(
aAn

(
s

s2 + (nω)2

)
+ aBn

(
nω

s2 + (nω)2

))

ms2 + ρcas + k
.

Taking the inverse Laplace Transform [6] of (36) we find that:

u(0, t) = A + Ber1t + Cer2t

+
N∑

n=1

(
Dn cos(nωt) +

En

nω
sin(nωt) + Fner1t + Gner2t

)
(37)
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where:

r1,2 = −
ρca ±

√
(ρca)2 − 4mk

2m

A =
aPm

mr1r2

B = − aPm

r1(r2 − r1)m

C =
aPm

r2(r2 − r1)m

Dn = −Fn −Gn

En = −r1Fn − r2Gn

Fn =
aAn −mGn(r2

2 + n2ω2)
m(r2

1 + n2ω2)

Gn =
a(r2An + nωBn)

m(r2 − r1)(r2
2 + n2ω2)

Equation (37) describes the solution for the displacement of the CSF at the point
x = 0. But as the point x = 0 is where the outer wall meets the CSF, (37) is the
equation that describes the movement of the outer wall for all time t ≥ 0.

Looking at our solution for u(0, t) (37) we can make some observations about the
behavior of this equation. Because of our initial conditions, we know that u(0, 0) =
0. Note that (37) is a sum of periodic terms, exponential terms and a constant. As
both the periodic terms and the constant term are bounded, a finite sum of these
terms is also bounded. Therefore to understand what this function looks like as
t increases towards infinity we need to understand the contribution of exponential
terms.

Note that all of the exponential terms are of the form yert where y is some constant
and r = r1 or r2 where

r1,2 = −
ρca ±

√
(ρca)2 − 4mk

2m
.

Note also that this places a restriction on our values for ρ, c, a, m and k as in order
for r1,2 to be real, we need

(ρca)2 ≥ 4mk.

To determine if r1,2 is positive or negative, first we observe that, due to how the
problem was defined, all the constants in r1,2 (ρ, c, a, m, k) are all positive values.
So:

ρca +
√

(ρca)2 − 4mk

2m
> 0

r1 = −
ρca +

√
(ρca)2 − 4mk

2m
< 0
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For r2 consider the fact that
√

(ρca)2 − 4mk < ρca. Thus:

ρca−
√

(ρca)2 − 4mk > 0

ρca−
√

(ρca)2 − 4mk

2m
> 0

r2 = −
ρca−

√
(ρca)2 − 4mk

2m
< 0

So all the exponential terms will go to zero as t becomes very large. The value
of the exponential terms at the point t = 0 will depend on the constant y. Thus
for large values of t only the bounded periodic terms and the constant will affect
the graph of u(0, t). So we expect the function to start at u(0, 0) = 0 and become
periodic over time.

4. An Implicit Finite Difference Solution Methodedgy

In this section we will develop a new implicit finite difference scheme to solve the
coupled system eqs (23)-(27). To rewrite the derivatives of u(x, t) and v(x, t) we
first consider the following general second order finite difference approximations for
some function f(y), where 0 ≤ y ≤ Y :

f ′(y) =
f(y + ∆y)− f(y −∆y)

2∆y
+ O(∆y2) ∆y ≤ y ≤ Y −∆y

f ′′(y) =
f(y + ∆y)− 2f(y) + f(y −∆y)

∆y2
+ O(∆y2) ∆y ≤ y ≤ Y −∆y

f ′(0) =
−3f(0) + 4f(∆y)− f(2∆y)

2∆y
+ O(∆y2) (y = 0)

f ′(Y ) =
f(Y − 2∆y)− 4f(Y −∆y) + 3f(Y )

2∆y
+ O(∆y2) (y = Y )

Figure 3 illustrates the computation domain for u(x, t), where 0 ≤ x ≤ L and

Figure 3. Computational domain

0 ≤ t ≤ tF , as a grid with the x domain partitioned into M subintervals, with spa-
tial step size ∆x = L

M , and the time partitioned into N subintervals, with temporal
step size ∆t = tF

N . For simplicity of notation we will use U i
j = u((∆x)i, (∆t)j) and
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V i
j = v((∆x)i, (∆t)j). Thus, eqs (23)-(24) are rewritten implicitly for j ≥ 1 as:

(38)
V j+1

i − V j−1
i

2∆t
=

c2(U j+1
i+1 − 2U j+1

i + U j+1
i−1 )

∆x2
+ O(∆x2,∆t)

for 1 ≤ i ≤ M − 1, and:

(39)
U j+1

i − U j−1
i

2∆t
= V j+1

i + O(∆t)

for 0 ≤ i ≤ M . Note that because we are using an implicit scheme, the right hand
sides of both (38) and (39), while being second order in space, are first order in
time. One can verify this using Taylor Series expansion in both space and time.
The boundary conditions eqs (26) - (27) are rewritten for j ≥ 1 as:

m(V j+1
0 − V j−1

0 )
2∆t

= aPBLOOD(∆t(j + 1))− kU j+1
0(40)

+
ρc2a(−3U j+1

0 + 4U j+1
1 − U j+1

2 )
2∆x

+ O(∆x2,∆t)

where PBLOOD is given by (20), and:

(41) V j+1
M =

−c(U j+1
M−2 − 4U j+1

M−1 + 3U j+1
M )

2∆x
+ O(∆x2)

By gathering all j +1 terms on one side and dropping higher order terms, (38)-(41)
becomes:
PDE for j ≥ 1:

(42)
(

2c2

∆x2

)
U j+1

i −
(

c2

∆x2

)
(U j+1

i−1 + U j+1
i+1 ) +

(
1

2∆t

)
V j+1

i =
(

1
2∆t

)
V j−1

i

(43) U j+1
i − 2∆tV j+1

i = U j−1
i

Boundary Conditions for j ≥ 1:

(
k +

3ρc2a

2∆x

)
U j+1

0 −
(

2ρc2a

∆x

)
U j+1

1 +
(

ρc2a

2∆x

)
U j+1

2 +
( m

2∆t

)
V j+1

0

(44)

=
( m

2∆t

)
V j−1

0 + aPBLOOD(∆t(j + 1))

(45) cU j+1
M−2 − 4cU j+1

M−1 + 3cU j+1
M + 2∆xV j+1

M = 0

In matrix form this may be written as:

(46) A





U0

U1
...

UM−1

UM

V0

V1
...

VM−1

VM





(j+1)

=





m
2∆tV0
1

2∆tV1
...

1
2∆tVM−1

0
U0

U1
...

UM−1

UM





(j−1)

+





aPBLOOD(∆t(j + 1))
0
0
0
0
...
0
0
0
0
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where:

A =
[
B C
D E

]

B =





k + 3ρc2a
2∆x

−2ρc2a
∆x

ρc2a
2∆x 0 · · · 0

− c2

∆x2 2 c2

∆x2 − c2

∆x2 0 · · · 0

0 − c2

∆x2 2 c2

∆x2 − c2

∆x2 · · · 0

...
. . . . . . . . .

...
0 · · · 0 − c2

∆x2 2 c2

∆x2 − c2

∆x2

0 · · · 0 c −4c 3c





C =





m
2∆t 0 0 · · · 0
0 1

2∆t 0 · · · 0
...

. . .
...

0 · · · 0 1
2∆t 0

0 · · · 0 0 2∆x





D =





1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 0 1





E =





−2∆t 0 · · · 0
0 −2∆t · · · 0
...

. . .
...

0 · · · 0 −2∆t





In order to solve this system (46), we first need solutions at the first two time levels,
j = 0 and j = 1. For j = 1, we use the first order finite difference approximation

f ′(y) =
f(y + ∆y)− f(y)

∆y
+ O(∆y).

Using this approximation, for j = 1 (23)-(24) are rewritten implicitly as:

(47)
V 1

i − V 0
i

∆t
=

c2(U1
i+1 − 2U1

i + U1
i−1)

∆x2
+ O(∆x2,∆t)

for 1 ≤ i ≤ M − 1, and:

(48)
U1

i − U0
i

∆t
= V 1

i + O(∆t)

for 0 ≤ i ≤ M . The boundary conditions (26) - (27) are rewritten implicitly as:

(49)
m(V 1

0 − V 0
0 )

∆t
= aPBLOOD(∆t)− kU1

0 +
ρc2a(−3U1

0 + 4U1
1 − U1

2 )
2∆x

+ O(∆x2,∆t)

where PBLOOD is given by (20), and:

(50) V 1
M =

−c(U1
M−2 − 4U1

M−1 + 3U1
M )

2∆x
+ O(∆x2)

From the initial conditions (25) we know that at j = 0, U0
i = V 0

i = 0 for 0 ≤ i ≤ M .
By substituting this into (47)-(50), dropping higher order terms, and rewriting in
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matrix form we get:

(51) F





U0

U1
...

UM−1

UM

V0

V1
...

VM−1

VM





(1)

=





aPBLOOD(∆t))
0
0
0
0
...
0
0
0
0





where:

F =
[
B G
D H

]

G =





m
∆t 0 0 · · · 0
0 1

∆t 0 · · · 0
...

. . .
...

0 · · · 0 1
∆t 0

0 · · · 0 0 2∆x





H =





−∆t 0 · · · 0
0 −∆t · · · 0
...

. . .
...

0 · · · 0 −∆t





Thus by solving (51) we get the solution for j = 1. Then for j ≥ 2 we solved (46).

5. Computational Experiments

In this section, we perform the following computational studies. First we validate
the numerical solution obtained implicitly by solving eq (46) against the analytical
solution for u(0, t) eq (37). Once our model is validated we study the influence of
various parameters on the displacement of the wall u(0, t).

We consider the following realistic values for our experiments. For the CSF, we
used ρ = 1000 kg/m3 [2] and c = 1500 m/s. For the blood pressure model, we used
Pm = 65.7 mmHg, ω = 1 rad/s, and for the harmonics we used A1 = −7.13, B1 =
4.64, A2 = −3.08, B2 = −1.18, A3 = −0.130, B3 = −0.564, A4 = −0.205, B4 =
−0.346, A5 = 0.0662, B5 = −0.120, all in mmHg [16]. Finally for the wall we used
a = .01 m2, k = 8000 N/m and m = .001 kg. Note that these values meet our
restriction from the analytical solution that (ρca)2 ≥ 4mk as:

(ρca)2 = [1000(kg/m3) ∗ 1500(m/s) ∗ .01(m2)]2

= 2.25 ∗ 108(kg2/s2)
≥ 4mk

= 4 ∗ .001(kg) ∗ 8000(N)

= 32(kg2/s2).
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In addition, the eigenvalues of matrix A from eq (46) were computed which resulted
in all nonzero values.

5.1. Comparison of Analytical vs Numerical. In Figure 4 presents the ana-
lytical and numerical solutions for the displacement of the outer wall u(0, t). Due
to our intial conditions the displacement starts at zero and stabilizes after a few
seconds. Note that, as we predicted from our analytical solution, the exponential
terms seem to affect the graph in the first few seconds, as the graph quickly in-
creases from zero, but then the graph stabilizes into a bounded periodic motion. It
is clear from Figure 4 that the implicit finite difference scheme developed for the
coupled system matches well with the analytical solution.

Figure 4. Analytical vs Numerical

In order to determine the rate of convergence of the numerical scheme, we first
assume that there is a power relationship between ∆t and the relative L2 norm
error, e. Thus e ≈ c(∆t)α where c is a constant. To find α:

e1 ≈ c(∆t1)α

e2 ≈ c(∆t2)α

e1

e2
≈

(
∆t1
∆t2

)α

α ≈
ln e1

e2

ln ∆t1
∆t2

See Table 1 for α values calculated as the step size ∆t is reduced. The value of α
approaches 1, indicating that it is first order in time.
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∆t Relative L2 Norm α
12.5000 0.7165 -
6.2500 0.5086 0.4945
3.1250 0.3420 0.5725
1.5625 0.1741 0.9741
0.7812 0.0739 1.2366
0.3906 0.0337 1.1341
0.1953 0.0160 1.0773
0.0977 0.0077 1.0437
0.0488 0.0038 1.0233
0.0244 0.0019 1.0117

Table 1. Error for decreasing ∆t.

Figure 5. Influence of wall stiffness

Figure 6. Influence of wall stiffness on maximum displacement
and maximum velocity.

5.2. Influence of the Stiffness of the Wall. The spring constant physically
models the stiffness of the arterial wall. Therefore, as the spring constant is de-
creased, the wall becomes more flexible, which causes the wall to move father out
and to take longer to stabilize. Both Figures 5 and 6 illustrates this. In Figure
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5 we plot the solution for decreasing values of the spring constant from k = 8000
N/m to k = 3000 N/m. We can see that as k decreases the displacement is greater
and it takes longer for the wall to settle into a steady periodic motion. However,
note that the value of the spring constant has no affect on the amplitude of the
periodic movement of the wall. In Figure 6 we plot the maximum displacement
and maximum velocity reached by the wall for varying values of k. Again we notice
that the maximum displacement decreases as k increases, as does the maximum
velocity of the wall.

Figure 7. Influence of density of CSF.

Figure 8. Influence of density of CSF on maximum displacement
and maximum velocity.

5.3. Influence of the Density of the CSF. As the CSF becomes more dense, it
resists the movement of the wall, so the amplitude of the periodic movement of the
wall is expected to become much less. Both Figures 7 and 8 show this. Figure 7
illustrates the motion of the wall for increasing values of the density from ρ = 1000
kg/m3 to ρ = 6000 kg/m3 of the CSF. Note that this graph is at a later time
period than Figure 5; it is after the movement of the wall has stabilized. Also note
that the maximum and minimum points of the wall’s movement shift to a later
time as the CSF becomes more dense, showing that it takes longer for the wall
to push the CSF aside. In Figure 7 we are graphing the maximum displacement

14Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



FSI MODELS FOR BIOLOGICAL SYSTEMS

and maximum velocity as ρ is increased, and on the graphs we see that they both
decrease quickly as ρ is increased from close to zero to about 2000 kg/m3, and then
remain at constant values.

Figure 9. Influence of pulsatile frequency of the blood

Figure 10. Influence of pulsatile frequency of the blood on max-
imum displacement and maximum velocity.

5.4. Influence of Pulsatile Frequency of the Blood. As the frequency is in-
creased, the period of the periodic movement of the wall is expected to decrease, as
is the amplitude. To verify this, the motion of the wall was investigated for different
values of the pulsatile frequency. In Figure 9 the pulsatile frequency of the blood
pressure (ω) is varied from ω = 0.5 to ω = 1.5. By looking at eq (37) we know that
the frequency of the periodic motion depends only on ω so it makes sense that the
period decreases as frequency increases. The fact that increasing the frequency re-
sults in the amplitude of the wall decreases means that the outer wall has less time
to react to the pressure from the blood pushing before it switches directions, thus
the lower amplitude. Also in Figure 10 we have plotted the maximum displacement
and maximum velocity as a function of ω. As with the density of the CSF, when ω
increases, the maximum displacement decreases. However the velocity increases to
a maximum of 0.0119 m/s, which corresponds to ω = 1.95 rads/s, then decreases
slightly to a constant value.
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6. Conclusions and Future Work

This work has been about creating a computational model of a complex biological
system that incorporates all three major aspects of an aneurysm: the CSF, the
arterial wall and the blood pressure. To provide a better insight into the complex
model a simple one dimensional model was formulated and an analytical solution
was derived. This was done primarily by making a number of assumptions about the
CSF to simplify the associated PDE (1) to the wave equation (17)-(18). In addition
we developed a numerical scheme to solve the same simplified model. Now that
we have both this analytical solution and a numerical methodology that matches
the analytical solution, our next goal is to relax some of the assumptions made and
solve the associated coupled model using the numerical methodology developed in
this paper. This will be the focus of a forthcoming paper.
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