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Abstract. The telegraph equation is employed to model wave fields taking into account energy dissipation and media stiffness. The time-
harmonic scattered waves generated by a line source incident upon cylindrical obstacles of arbitrary cross-section are studied. Solutions are found
to depend strongly on the relative values of the frequency, damping, and stiffness coefficients. These coefficients are also found to have a significant
effect on the far-field pattern. The analytical solution for a circular cylinder is reviewed. An approximate finite-difference solution is also obtained
for the case of a two-dimensional scatterer with an arbitrary cross-section. Details are given for both soft and hard boundary conditions. The
main feature of the numerical scheme is its computational efficiency based on the coupling between boundary conforming grids and a curvilinear
coordinates version of the Dirichlet-to-Neumann non-reflecting boundary condition.
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1. Introduction. In many applications, wave propagation experiences energy losses due to a variety of physical
factors such as viscosity, heat transfer, turbulence, dispersion, electrical resistance and inhomogeneities. For example,
in [9] the authors studied wave propagation through grainy materials where elastic wave attenuation is considerable.
Sound decay due to viscous and thermal effects was studied by Rodarte, Temkin and others [19, 24]. Various models
[21, 23, 22] have been formulated to study high frequency wave motion in lossy media. Electromagnetic waves
constitute another important example of attenuation since they are rapidly absorbed in conducting media due to the
flow of free charges. In brief, attenuation plays an important role in several branches of wave propagation such as
electrodynamics, elasticity, ultrasound physics, etc.

A natural way to model dissipative oscillations is to use telegraph-type equations. The telegraph equation was first
derived to model the voltage and current in electrical transmission lines, such as telegraph wires. A similar dissipative
model was used in [13] and [7] to study the behavior of waves. The telegraph equation has also been employed in
other areas. For example, it is used as a replacement for the diffusion equation to model transport of charged particles
[10, 1] or solar cosmic rays [8], chemical diffusion, and population dynamics [12]. It is also employed in the theory
of hyperbolic heat transfer [6, 5].

In this paper, the telegraph equation is used as the governing relation. It is not intended to restrict this equation
to a particular wave type. Rather, it is used as a general model of scalar wave fields without specifying their actual
physical nature. In the time domain, the field solutionv(x, t) is governed by the inhomogeneous telegraph equation:

1

c2

∂2v

∂t2
+ A

∂v

∂t
+ Bv −∇2v = F. (1.1)

By definition,A andB are non-negative real numbers, and they are known as the damping and stiffness coeffi-
cients, respectively. More precisely, the first order partial derivative in time term is associated with energy dissipation,
and theBv term corresponds to the tendency of the medium to resist deviations from a given unstressed state. This
latter term is commonly encountered in modeling the vibrations of a stiff membrane that resist to be transversely de-
flected, regardless of the tension applied thereon. This work is directed to show the effects of damping and stiffness
on the wave fields and the far-field pattern.
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The wave scattering of line sources from infinitely long cylindrical obstacles is studied. The obstacles are sub-
jected to eitherDirichlet (soft) or Neumann (hard) boundary conditions. In particular, focus is placed on time-harmonic
waves subjected to various degrees of energy dissipation and media stiffness. Time-harmonic solutions of the form
v(x, t) = u(x)e−iωt are sought. They are induced by time-harmonic line sources of the formF = f0(x)e−iωt which
leads to the reduced telegraph equation:

∇2u + k2u = −f0 (1.2)

wherek2 = ω2/c2 + Aωi−B. It is noticed that the problem reduces to the Helmholtz equation with a complex wave
number.

The exact solution to the scattering problem governed by equation (1.2) in the presence of a circular cylinder
(with soft and hard boundary conditions) is reviewed, and a numerical method is applied for a cylinder of arbitrary
cross-section. The numerical method consists of an implicit finite-difference scheme supported by boundary-fitted
elliptic grids.

Our numerical method requires that the unbounded physical domain is truncated. In fact, the radiation condition at
infinity is replaced by a Dirichlet-to-Neumann (DtN) absorbing boundary condition over a circle enclosing the obstacle
(as shown in Figure 2.1). For completeness, the derivation of the DtN boundary condition, first obtained by Keller
and Givoli in [14], is presented and incorporated into our numerical method. To the best of our knowledge, this is the
first work in which the DtN condition is expressed in terms of generalized curvilinear coordinates and coupled with
elliptic grids. The major goal of the numerical part of this work is to obtain accurate solutions for arbitrary scatterers
by means of a computationally feasible method. As it will be shown later, this goal is met since the computational
region is considerably reduced by using the DtN condition and by combining it with generalized curvilinear boundary
conforming coordinates.

The outline of the paper is as follows. In Section 2, an expression for the incident field is found to be the two-
dimensional Green’s function for Helmholtz equation with a complex wave number. In Section 3, the scattering
boundary value problem modeled by the reduced telegraph equation is considered. For clarity, some details on the
derivation of its analytical solution, based on eigenfunction expansions, for the circular scatterer are given. In Section
4, the derivation of the DtN non-reflecting boundary condition for the reduced telegraph equation is reconsidered in
preparation for the numerical treatment of our boundary value problem. One of the goals of this work is to study
the scattering of waves from obstacles of arbitrary shape when the reduced telegraph equation is used as a governing
equation. This is the subject of Section 5. To achieve this goal, the entire governing boundary value problem (BVP)
is expressed in curvilinear coordinates that conform to the bounding curve of the scatterers. Section 6 deals with the
numerical solution for complexly shaped scatterers. The grid generation process is described, and the finite-difference
method in curvilinear coordinates used to solve the problem is devised. In Section 7, the formula for the far-field
pattern is discussed. In Section 8, the numerical solution is compared with the exact solution for the circular cylinder
as a validation procedure. Then, the method is applied to a complexly shaped scatterer, and the effects of damping and
stiffness are analyzed. Finally, Section 9 contains our concluding remarks.

2. The Incident Field. Consider the wave scattering of a line source from an infinitely long cylinder of arbitrary
cross-section. The axes of the line source and of the cylinder are taken parallel to thez-axis. This symmetry leads
to a two-dimensional problem. A global Cartesian system of coordinates(x, y) is defined with its origin on the
axis of the cylindrical obstacle. An arbitrary point in this system has a vector position denoted byx = (x, y) and
its corresponding polar coordinates(r, θ) such thatx = r cos θ andy = r sin θ. A second Cartesian coordinate
system(x̃, ỹ) is defined with its origin at the source (see Figure 2.1), and associated polar coordinates (r̃,θ̃) such that
x̃ = r̃ cos θ̃ andỹ = r sin θ̃. The location of the origin of the first polar coordinate system with respect to the second
one is (L,φ).

The time-harmonic solutionu(r, θ) is induced by the two-dimensional sourcef0 = −Λδ(x̃)δ(ỹ) acting in the
plane. This source can be expressed in polar coordinates asf0 = −Λδ(r̃)/(2πr̃), whereδ is the one-dimensional
Dirac delta function andΛ is the strength of the source. For a complete discussion on delta functions for multi-
dimensional spaces, the reader is referred to Chapter 9 of book titledGreen’s Functionsby Roach [18]. Let the total
field be decomposed into an incidentuinc(r̃) and a scattered fieldusc(r, θ), such that

u(r, θ) = uinc(r̃) + usc(r, θ). (2.1)
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FIG. 2.1. Sketch of the physical domain, the source, and the coordinate systems.

The incident field satisfies the following equation:

1

r̃

d

dr̃

(

r̃
d

dr̃
uinc

)

+ k2uinc = Λ
δ(r̃)

2πr̃
in R

2. (2.2)

It is noticedthat there is nõθ-dependence in equation (2.2) due to the radial symmetry of the line source. Since
the original line source reduces to a single source in two dimensions, then the incident field happens to be the two-
dimensional fundamental solution (amplified byΛ) of the reduced telegraph equation, that is

uinc(r̃) =
−iΛ

4
H

(1)
0 (kr̃). (2.3)

This is the same infinite plane Green’s function for the Helmholtz equation with the only difference that the wave
numberk is a complex number in general. This expression for the incident field is used not only in the analytical
Section 3 of the present article, but also in the subsequent numerical treatment. From this point on, we will work on
obtaining the scattered fieldusc, keeping in mind that the incident fielduinc plays an important role by determining
the scattered fieldusc at the boundary of the obstacle. Furthermore, in order to obtain the total fieldu, it is necessary
to superimpose both of its components as in Equation (2.1).

3. Analytical Solution for a Scatterer with Circular Cross-section. Consider the wave scattering from a cir-
cular cylinder of radiusa. The scattered fieldusc satisfies the following boundary value problem in an infinite domain
Ω bounded internally by a soft cylindrical surfaceS:

∇2usc + k2usc = 0 in Ω, (3.1)

usc = −uinc on S, (3.2)
√

r
(∂usc

∂r
− ikusc

)

→ 0 as r → ∞, (3.3)

where Equation (3.3) is the Sommerfeld radiation condition. For a hard cylindrical surface, Equation (3.2) is replaced
by

∂usc

∂r
= −∂uinc

∂r
on S. (3.4)
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At this point, it is appropriate to write the incident field in terms of the first polar coordinate system. In other
words, intermsof r andθ. This is an essential step in order to find the scattered field. To do so, Graf’s addition
theorems are applied. Excellent discussions of these theorems are found in Chapter 2 of [17] and Chapter 10 of [29].
For the Hankel functions, they state that

H(1)
m (kr̃)eimθ̃ =

∞
∑

n=−∞

H
(1)
m−n(kL)Jn(kr)einθei(m−n)φ for m = 0, 1, 2, ... (3.5)

In particular, it is necessary to findH(1)
0 by settingm = 0, and use the identityH(1)

−n(kL) = (−1)nH
(1)
n (kL), to

expand the incident field in terms of the first polar coordinate system as follows:

uinc(r, θ) =
−iΛ

4

∞
∑

n=−∞

(−1)nH(1)
n (kL)Jn(kr)ein(θ−φ). (3.6)

We are now in a position to find the scattered field. In terms of the eigenfunctions of the corresponding homoge-
neous BVP, solutions to Equation (3.1) are given by

usc(r, θ) =
iΛ

4

∞
∑

n=−∞

(−1)nCnH(1)
n (kL)H(1)

n (kr)ein(θ−φ). (3.7)

Since the Hankel functions automatically satisfy the Sommerfeld radiation condition, it only remains to satisfy the
condition at the obstacle’s boundary, either (3.2) or (3.4). Using the known coefficients of the expansion of the
incident wave (3.6), the unknown coefficients of the infinite series (3.7) for the scattered wave are determined. In fact,
for the soft obstacle boundary the coefficients are

Cn =
Jn(ka)

H
(1)
n (ka)

, (3.8)

whereas forthehard one, Equation (3.4) yields

Cn =
Jn

′(ka)

H
(1)
n

′(ka)
. (3.9)

For computationalreasons, the symmetry about the line passing through the source and the center of the cylinder
is exploited. Thus, the scattered field may be written as

usc(r, θ) =
iΛ

4

∞
∑

n=0

ǫn(−1)nCnH(1)
n (kL)H(1)

n (kr) cos n(θ − φ) (3.10)

whereǫn is the Neumann factor, ie.ǫ0 = 1 andǫn = 2 for n ≥ 1.
This exact solution will help us to find the far-field pattern in Section 7, and it will be used to validate our numerical

method in Section 8. Moreover, from the analytical solution, much may be learned about the behavior of the fields
for different values ofA andB. Notice that the damping and stiffness coefficients are embedded into the effective
wave numberk. This number will induce very different wave behavior depending on whetherk is a purely imaginary
number, purely real, or neither. These differences are made evident by analyzing the asymptotic expansions of the
Hankel functions (see Chapter 9 of the Handbook of Mathematical Functions [2] or Chapter 7 of [29]) that appear in
the incident and scattered fields. Indeed, for large arguments (|z| → ∞) and any integer ordern,

H(1)
n (z) → (−i)n (1 − i)√

πz
eiz (3.11)

wherez = kr. Noticethat there is a decaying factor that is inversely proportional to
√

r. This is due to the fact that
the radiatingwaves are spreading over the two-dimensional space as they propagate. However, there is an additional
exponentially decaying term ifz has a positive imaginary part.

Although the wave fields are continuously oscillating in the time domain with an angular frequencyw, it is the
radial profile of oscillation in the frequency domain what we are after. These spatial profiles may be classified in the
following three cases or regimes:
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- Case 1: The effective wave numberk is purely imaginary or identically zero. This occurs when there is
no damping at all andB ≥ w2/c2. In this case, a non-oscillatory radial profile results. In fact, the Hankel
functions may be replaced by the modified Bessel functions of second kind (or MacDonald’s functions) which
are well-known to decay without oscillations. Notice that only the relative difference betweenB andw2/c2

is relevant but not their actual values. The greater this difference, the more rapidly waves will decay over
distance. Also, it is worth noting thatB = w2/c2 is a special case in which the governing equation reduces
to Laplace equation.

- Case 2: The effective wave number is real. Again, this occurs when there is no damping at all, butw2/c2 >
B. In this case, the radial profile consists of oscillations. Moreover, the greater the difference betweenw2/c2

andB is, the more spatial oscillations will fit in a given unit of radial distance.
- Case 3: The effective wave number has non-zero, real and imaginary parts. This case occurs wheneverA > 0

(for A < 0 the solution is non-physical). The resulting field combines the behavior of the previous cases.
There will be spatial oscillations as well as damping effects in the amplitude.

The real part of the incident field (2.3) for these three cases is illustrated in Figure 3.1. Here, the following
parameters,c = 1, Λ = 1 andw = 2π, are taken for all cases.
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FIG. 3.1. Illustration of the radial wave profile of the incident field (real part) for the three different cases. For Case 1:A = 0 andB = 40,
for Case 2:A = 0 andB = 5, and for Case 3:A = 1 andB = 5.

4. Dirichlet-to-Neumann Boundary Condition. In this section, a review of the derivation of the Dirichlet-to-
Neumann (DtN) absorbing boundary condition for the Helmholtz equation is presented. It will be used in Section 6
for the numerical treatment of the BVP (3.1)-(3.4).

The DtN condition was first derived in [14]. It is a non-reflecting boundary condition especially developed to
obtain numerical solutions to BVP for Laplace and Helmholtz equations in unbounded domains. It enables the efficient
replacement of the physical unbounded region by a bounded domain. This condition permits waves to leave the
truncated region without any spurious or non-physical reflections.

The first step in the derivation of the DtN condition is to divide the physical domainΩ in two regions: A bounded
sub-domainΩnear that contains the obstacle, and the remaining unbounded exterior regionΩfar, as shown in Figure
2.1. The interfacial boundary between these regions is denoted byB. In general,B should be described by a curve that
coincides with a coordinate line of a separable system of coordinates. In this work,B is chosen to be a circle of radius
R centered at the origin.

The second step is to solve the Dirichlet problem in the unbounded regionΩfar by assuming the fieldusc to
be known onB and the Sommerfeld radiation condition at infinity. The well-known solution for this BVP can be
expressed as the following series of eigenfunctions:

usc(r, θ) =
1

2π

∞
∑

n=0

ǫn

H
(1)
n (kr)

H
(1)
n (kR)

∫ 2π

0

usc(R, θ̄) cos n(θ − θ̄)dθ̄, (4.1)
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wherer ≥ R. If the wave numberk happens to be identically zero, then the governing equation reduces to Laplace
equation which belongs to Case 1. As it was noted in [14], Equation (4.1) may be replaced by its limiting form as the
argument of the Hankel functions tends to zero. In fact, as shown in page 360, Chapter 9 of reference [2], the limiting
behavior for small arguments (z→ 0) is the following:

H
(1)
0 (z) → 1 +

2i

π
ln z and

H(1)
n (z) → −i

π
(n − 1)!(z/2)−n for n > 0, (4.2)

which leads to

H
(1)
n (kr)

H
(1)
n (kR)

→
(R

r

)n

as k → 0 for n ≥ 0, (4.3)

yielding theexact solution for Laplace equation in the unbounded domainΩfar for a given Dirichlet-type data at
r = R,

usc(r, θ) =
1

2π

∞
∑

n=0

ǫn

(R

r

)n
∫ 2π

0

usc(R, θ̄) cos n(θ − θ̄)dθ̄. (4.4)

The analytical solution (4.1) inΩfar renders an exact relation between the unknown functionusc and its normal
derivative onB. Therefore, the final step is to differentiate Equation (4.1) with respect tor and setr = R, which
results in the DtN boundary condition for Helmholtz equation:

∂usc

∂r
(R, θ) =

k

2π

∞
∑

n=0

ǫn

H
(1)
n

′(kR)

H
(1)
n (kR)

∫ 2π

0

usc(R, θ̄) cos n(θ − θ̄)dθ̄. (4.5)

For the limiting case whenk → 0, it is observed that

k
H

(1)
n

′(kR)

H
(1)
n (kR)

→ − n

R
, (4.6)

and the correspondingDtN boundary condition for Laplace equation

∂usc

∂r
(R, θ) =

−1

2π

∞
∑

n=0

ǫn

n

R

∫ 2π

0

usc(R, θ̄) cos n(θ − θ̄)dθ̄ (4.7)

is obtained. Although no problem is treated in this paper for whichk is exactly zero, Equation (4.7) is provided for
completeness.

Boundary condition (4.5), prescribed at the interfacial circleB, completes the formulation of the BVP inΩnear.
This BVP will be solved numerically. Due to the arbitrariness of the obstacle’s bounding curve, a curvilinear coor-
dinate system is employed in the bounded sub-domain. This requires to express the DtN condition (4.5) in terms of
generalized curvilinear coordinates, which is done in Section 5.

5. Boundary Conforming Coordinates. One of the goals of this work is to develop efficient and reliable numer-
ical methods to obtain approximations for the solution of the scattering problem modeled by (3.1)-(3.4). An important
part of the technique is to create an appropriate grid for the regionΩnear that contains a complexly shaped obstacle.
Our approach is based on creating a grid that fits the arbitrary inner boundaryS and the circular interfacial boundary
B.

The grid generation method is due to Winslow [30]. Once the grid is constructed, it will be used in the finite-
difference treatment of our problem. The Winslow coordinates may be regarded as a transformationT from a com-
putational domainC with rectangular coordinates (ξ,η) to the truncated physical domainΩnear with coordinates
(x(ξ, η),y(ξ, η)). The cylinder’s bounding curve is denoted byS, and the artificial boundary byB, as seen in Fig-
ure 2.1. The computational variables are such that1 ≤ ξ ≤ N1 and1 ≤ η ≤ N2. An illustration of this transformation
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with its domain and range is displayed in Figure 5.1. The transformationT is implicitly definedas the solution of the
following Dirichlet boundary value problem governed by the two quasi-linear elliptic equations:

αxξξ − 2βxξη + γxηη = 0, (5.1)

αyξξ − 2βyξη + γyηη = 0, (5.2)

where the Dirichlet-type boundary data is given by specifying the coordinates(x, y) at the boundaries ofΩnear such
that the parametric curves (x(ξ, 1),y(ξ, 1)) and (x(ξ,N2),y(ξ,N2)) coincide with the obstacles’s boundaryS and the
artificial boundaryB, respectively. The symbolsα, β andγ represent the scale metric factors of the transformationT .
They are defined asα = x2

η + y2
η, β = xξxη + yξyη, andγ = x2

ξ + y2
ξ . The jacobianJ of this transformation plays an

important role in the formulation of the scattering problem in curvilinear coordinates. It is defined asJ = xξyη−xηyξ.
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FIG. 5.1. Illustration of the transformationT that is used in the generation of the boundary conforming coordinates.

At this point, the entire scattering boundary value problem inΩnear may be written in terms of generalized
curvilinear coordinates(ξ, η). In particular, explicit expressions are sought for the Laplacian and the gradient operators
acting on the scattered field. A complete derivation is provided in Section 2.3 of the second Chapter of [15]. The final
expressions for the components of the gradient are:

(usc)x =
1

J

(

(usc)ξyη − (usc)ηyξ

)

, (5.3)

(usc)y =
1

J

(

(usc)ηxξ − (usc)ξxη

)

, (5.4)

and theLaplacianbecomes:

∇2usc = (usc)xx + (usc)yy =
1

J2

(

α(usc)ξξ − 2β(usc)ξη + γ(usc)ηη

)

+
1

J3

(

αxξξ − 2βxξη + γxηη

)(

yξ(usc)η − yη(usc)ξ

)

+
1

J3

(

αyξξ − 2βyξη + γyηη

)(

xη(usc)ξ − xξ(usc)η

)

.
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The above expressions are completely general and valid for any system of coordinates. However, the Laplacian may
be simplified considerablyby using the Winslow coordinates and substituting Equations (5.1)-(5.2) into it. The result
is the following:

∇2usc =
1

J2

(

α(usc)ξξ − 2β(usc)ξη + γ(usc)ηη

)

. (5.5)

The Winslow coordinates provide a means to construct boundary-fitted curvilinear coordinates and also simplify the
cumbersome expression for the Laplacian operator. Another major advantage of this elliptic approach is that the
interior coordinates are smooth, even for non-smooth boundary data. Thus, the Helmholtz equation and the boundary
condition at the obstacle’s surface may be written in terms of(ξ, η) as follows:

1

J2

(

α(usc)ξξ − 2β(usc)ξη + γ(usc)ηη

)

+k2usc = 0 (5.6)

usc(ξ, 1) = −uinc(ξ, 1) on soft S, or (5.7)
∂usc

∂n
(ξ, 1) = −∂uinc

∂n
(ξ, 1) on hard S. (5.8)

Furthermore,the incident field may be introduced since it is already known. For the soft obstacle, the Dirichlet
boundary condition is obtained in terms of(ξ, η) by substituting the incident fielduinc from Equation (2.3) into
Equation (5.7). The following is the effective condition on the soft physical boundaryS:

usc =
iΛ

4
H

(1)
0 (k r̃) at η = 1, (5.9)

where r̃ =
√

(x − xs)2 + (y − ys)2 and (xs, ys) is the location of the source in the global Cartesian system of
coordinates.

For the hard obstacle, the Neumann boundary condition is more involved. In Equation (5.8), there are partial
derivatives ofusc anduinc in the normal direction toS. They may be expressed in terms of(ξ, η) by using the
gradients (5.3)-(5.4) as follows:

∂usc

∂n
= n̂ · ∇usc =

1√
γ

( −yξ

xξ

)

· 1

J

( (usc)ξyη − (usc)ηyξ

(usc)ηxξ − (usc)ξxη

)

,

where the unitnormal vector n̂ and the gradient ofusc have been written in terms of the generalized curvilinear
coordinates(ξ, η). By substitutinguinc from Equation (2.3) into Equation (5.8), the partial derivative of the incident
field becomes:

∂uinc

∂n
= n̂ · ∇uinc =

1√
γ

( −yξ

xξ

)

· −iΛk H
(1)
0

′(kr̃)

4r̃

(

x − xs

y − ys

)

.

Combining these results,condition(5.8) at the hard physical boundaryS becomes:

γ(usc)η − β(usc)ξ =
iΛkJ

4r̃

(

(y − ys)xξ − (x − xs)yξ

)

H
(1)
0

′(kr̃) at η = 1. (5.10)

Finally, it only remains to express the DtN non-reflecting boundary condition (4.5) onB in terms of generalized
curvilinear coordinates. Now we have a partial derivative in the direction normal to the artificial boundaryB. Again,
this is written as the dot product between the unit normal vectorn̂ and the gradient ofusc. SinceB is a circle of radius
R centered at the origin, then it is convenient to write the unit vector as follows:n̂ = (1/R)(x(ξ,N2), y(ξ,N2)).
Consequently, the partial derivative ofusc in the normal direction toB becomes:

∂usc

∂n
= n̂ · ∇usc =

1

R

(

x
y

)

· 1

J

(

(usc)ξyη − (usc)ηyξ

(usc)ηxξ − (usc)ξxη

)

.
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Substituting this last result into Equation (4.5), the DtN non-reflecting boundary condition onB adopts thefollowing
form:

1

RJ

(

(xyη − yxη)(usc)ξ + (yxξ − xyξ)(usc)η

)

=
k

2π

∞
∑

n=0

ǫn

H
(1)
n

′(kR)

H
(1)
n (kR)

∫ N1

1

usc(ξ̄, N2) cos n(θ(ξ) − θ(ξ̄))θ′(ξ̄)dξ̄ at η = N2. (5.11)

Notice that on the circleB, the polar angleθ can be written in terms of the independent variableξ such thatθ = θ(ξ).
The actual dependence onξ is explicitly obtained once the parametrization (x(ξ,N2),y(ξ,N2)) is established.

The Equations (5.6), (5.9), (5.10) and (5.11) represent the scattering BVP in terms of Winslow curvilinear coor-
dinates. Details of the grid generation process and the numerical solution of this scattering problem are offered in the
next section.

6. Numerical Solution for a Scatterer with Arbitrary Cross-section. This section is concerned with the con-
struction of the numerical method that is employed to solve the scattering problem for obstacles of arbitrary cross-
section. These obstacles may include geometric singularities such as cusps and corners. Due to this geometric com-
plexity, analytical solutions are not generally available.

An implicit finite-difference scheme is chosen to approximate the solution of BVP (5.6)-(5.11) in Winslow curvi-
linear coordinates. The numerical technique is intended to approximate the scattered field in the vicinity of a complexly
shaped obstacle and also to approximate the corresponding far-field pattern. By varying the values of the coefficients
A andB, the effects of damping and stiffness are analyzed. In particular, all the cases described in Section 3 are
considered. The grid generation constitutes the first step of the numerical method.

6.1. Grid Generation Process. Equations (5.1)-(5.2) are numerically solved using a second order finite-difference
scheme. For convenience, the discretization procedure is based on a uniform partition of the independent variablesξ
andη such that∆ξ = ∆η = 1 where∆ denotes the cell size in the computational domainC. The discrete values ofξ
andη are represented byξi = i∆ξ = i andηj = j∆η = j, for i = 1, 2, ..., N1 andj = 1, 2, ..., N2, respectively. Also,
the discrete values of the dependent variablesx(ξi, ηj) andy(ξi, ηj) are represented byxi,j andyi,j , respectively. An
analogous notation is used for the discrete values ofα, β, γ, andJ . The grid size is denoted byN1×N2. A refinement
of the discretization is then obtained by increasingN1 andN2 as desired.

When the partial derivative terms in Equations (5.1)-(5.2) are approximated by centered finite-difference formulas,
an algebraic equation is obtained for each discrete value ofx andy. As a result, twice as many equations as interior
points in the Winslow grid are obtained. For thex-component of the interior grid points(xi,j , yi,j), the equation is
written in point successive over relaxation (SOR) iterative form as follows:

xl
i,j =

1

2(α + γ)i,j

[

αi,j

(

xl−1
i+1,j + xl

i−1,j

)

+ γi,j

(

xl−1
i,j+1 + xl

i,j−1

)

− 1

2
βi,j

(

xl−1
i+1,j+1 − xl−1

i+1,j−1 − xl
i−1,j+1 + xl

i−1,j−1

)

]

(6.1)

where

αi,j = (xη)2i,j + (yη)2i,j

βi,j = (xξ)i,j(xη)i,j + (yξ)i,j(yη)i,j

γi,j = (xξ)
2
i,j + (yξ)

2
i,j

and

(xξ)i,j = (xl−1
i+1,j − xl

i−1,j)/2

(xη)i,j = (xl−1
i,j+1 − xl

i,j−1)/2

(yξ)i,j = (yl−1
i+1,j − yl

i−1,j)/2

(yη)i,j = (yl−1
i,j+1 − yl

i,j−1)/2

for i = 2, ..., N1 − 1 and j = 2, ..., N2 − 1.
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FIG. 6.1. Increasingly finer Winslow grids conform-
ing a circle. The grid sizes (from top to bottom) are:
60× 20, 90× 30, and120× 40.
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FIG. 6.2. Increasingly finer Winslow grids conform-
ing the three-cusp Astroid. The grid sizes (from top to bot-
tom) are:60× 20, 90× 30, and120× 40.
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A similar algebraic equation is obtained for the discrete values of they-component. Thesuper-indicesl andl − 1
represent the current and previous steps in the iteration. The SOR method uses a relaxation parameter̟, such that
xl

i,j = ̟xl
i,j +(1−̟)xl−1

i,j , with an analogous equation foryi,j . The value of̟ = 1.65 gives excellent convergence.
Good reviews of the SOR iterative technique for finite-difference methods are found in Chapter 13 of the book by
Strikwerda [20] and Chapter 4 of [16] by LeVeque. Forl = 0, an initial grid is defined. Then, new grids are iteratively
obtained until the maximum pointwise error between two consecutive grids falls under some specified tolerance, ie.
errl < Tol. This maximum pointwise error is defined as follows:

errl = max
1 ≤ i ≤ N1

1 ≤ j ≤ N2

{

|xl
i,j − xl−1

i,j |, |yl
i,j − yl−1

i,j |
}

. (6.2)

Grids generated according to the above procedure are shown in Figures 6.1 and 6.2. These are increasingly finer
grids conforming a circle and a three-cusp Astroid, respectively. The circle represents the cross-section of a model or
benchmark scatterer, and the Astroid represents an obstacle with arbitrary cross-section. Its parametric curve is given
by: x(t) = (2 cos t + cos 2t)/3, y(t) = (2 sin t − sin 2t)/3, and0 ≤ t ≤ 2π. The grid sizes (from top to bottom)
are:60× 20, 90× 30, and120× 40. It is clear that any other shape could have been selected as the arbitrary scatterer.

The Winslow elliptic equations applied to these domains produce non-self-overlapping and smooth grids without
the propagation of boundary slope-discontinuities into the interior. These are properties of primary importance for the
numerical solution of the field variables supported by these grids. A good summary of these techniques can be found
in Chapter 8 of the book by Hansenet al. [11] and the Handbook of Grid Generation by Thompsonet al. [25].

For novel and more efficient alternative elliptic grid generation algorithms, the reader is referred to [27, 4, 3].
These references deal with methods that improve the quality of the grid by adding control over the cell size, improving
the grid point distribution and producing clustering and/or stretching of grid lines where needed.

6.2. Numerical Scattering Problem. As discussed in the introduction, the scattering problem may be modeled
by the time-dependent formulation of the telegraph Equation (1.1) or by the reduced telegraph Equation (1.2) assuming
time-harmonic oscillations. In previous works [28, 3, 26], the explicit finite-difference method has been used for the
time-dependent model using generalized curvilinear coordinates. In this work, we adopt the second model. The
numerical method consists of an implicit finite-difference technique supported by the Winslow elliptic grids employed
to perform the spatial discretization of geometrically complex regions.

A second order finite-difference discretization is adopted to approximate all the partial derivative terms in the gov-
erning Equation (5.6). As a result, a linear system of algebraic equations is obtained for the numerical approximation
of the scattered fieldusc at each grid point.

At any interior point, the algebraic equation for(usc)i,j has the following form:

(

k2J2
i,j − 2(αi,j + γi,j)

)

(usc)i,j + αi,j

(

(usc)i+1,j + (usc)i−1,j

)

+ γi,j

(

(usc)i,j+1 + (usc)i,j−1

)

− βi,j

2

(

(usc)i+1,j+1 − (usc)i+1,j−1 − (usc)i−1,j+1 + (usc)i−1,j−1

)

= 0 (6.3)

for 1 ≤ i ≤ N1 − 1 and 2 ≤ j ≤ N2.

At the artificial boundaryB, the discrete Equation (6.3) evaluated at(usc)i,N2
involves the values of the three

“ghost” points denoted by(usc)i−1,N2+1, (usc)i,N2+1 and (usc)i+1,N2+1. These ghost points also appear in the
discretization of the DtN boundary condition:

1

R Ji,N2

[

(

x
i,N2

(yη)
i,N2

− y
i,N2

(xη)
i,N2

)(

(usc)i+1,N2
− (usc)i−1,N2

)

+
(

y
i,N2

(xξ)i,N2
− x

i,N2
(yξ)i,N2

)(

(usc)i,N2+1 − (usc)i,N2−1

)

]

=
k Θ2

π

N
∑

n=0

N1−1
∑

i′=1

ǫn

H
(1)
n

′(kR)

H
(1)
n (kR)

cos nΘ(i − i′) (usc)i′,N2
(6.4)

for 1 ≤ i ≤ N1 − 1,
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where the symbolΘ = 2π/(N1 −1). This relation is valid for an equidistant distribution of grid points alongB where
the integral operator has been approximated by the trapezoidal quadrature rule. This is proven to have second order
convergence for periodic functions. The factorΘ2 arose from the trapezoidal rule and from the fact thatθ′(ξ̄) = Θ for
this particular parametrization of the circleB. Also, notice that the DtN series has been truncated to include only up
to N terms.

At points on the obstacle’s boundary, the following discrete equations are derived. For the soft cylinder:

(usc)i,1 =

√
−1Λ

4
H

(1)
0 (k r̃i) (6.5)

for 1 ≤ i ≤ N1 − 1,

and forthehard cylinder:

γi,1

(

− 3(usc)i,1 + 4(usc)i,2 − (usc)i,3

)

− βi,1

(

(usc)i+1,1 − (usc)i−1,1

)

=

√
−1 Λ k µi Ji,1

2r̃i

H
(1)
0

′(k r̃i) (6.6)

for 1 ≤ i ≤ N1 − 1,

where theterm (usc)η from Equation (5.10) was discretized using a forward second order finite-difference formula.
This was done in order to preserve the second order scheme and avoid the introduction of ghost points at the obstacle’s
boundary. The symbols̃ri andµi appearing in Equations (6.5)-(6.6) are defined as follows:

r̃i =
√

(xi,1 − xs)2 + (yi,1 − ys)2

µi = (yi,1 − ys)(xξ)i,1 − (xi,1 − xs)(yξ)i,1.

The algebraic system formed by all these equations is then solved using a MATLAB direct solver subroutine for
linear systems. The number of unknowns is equal to the number of grid points (without counting twice the points at
the branch cut) plus the number of ghost points. In terms of the grid size, there are(N1 − 1)× (N2 +1) equations and
unknowns. The matrix pattern obtained from this finite-difference discretization, including the obstacle’s boundary
and ghost points, is shown in Figure 6.3. The algebraic system of equations (and the associated matrix) is formed in
the following manner. Equations (6.5) or (6.6) are used starting from the first node (i= 1) at the obstacle’s boundary
curve (j= 1) until the last node of thatj-level wherei = N1 − 1. Then, Equation (6.3) is used starting ati = 1 and
j = 2, moving outward in increasing order ofi andj until we reach the last node of the artificial boundaryB where
i = N1 − 1 andj = N2. At this point, the discrete DtN Equation (6.4) is employed to complete the algebraic system
and to determine theN1 − 1 ghost points. Since the DtN condition is global in character, a full block is obtained at
the lower-right corner of the matrix.

7. Far-Field Pattern. In many applications, it is important to describe the wave field far from the sources and
scatterers. For that reason, a function known as the far-field pattern is commonly used to characterize the scattered
field. The solutionusc to the BVP (3.1)-(3.4) has the following asymptotic behavior:

usc(r, θ) →
eikr

√
kr

f(θ, k) as r → ∞, (7.1)

wheref(θ, k) defines the far-field pattern. The magnitude off(θ, k) represents the relative amplitude of the scattered
field as a function of the angleθ and the effective wave numberk. Scatterers with different shape produce different
far-field patterns in general.

In previous sections, analytical and numerical solutions to the scattering problem have been obtained. In both
cases, the scattered field has been represented in terms of Hankel functions expansions in the exterior sub-domain
Ωfar. Therefore, by taking advantage of the asymptotic behavior of the Hankel functions, the far-field pattern can be
calculated. Indeed, Equation (3.11) states that

H(1)
n (kr) → eikr

√
kr

(−i)n (1 − i)√
π

, as r → ∞. (7.2)
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FIG. 6.3. Finite-difference matrix pattern for the scattering problem yielded on a Winslow grid. The full matrix is shown on the left and a
zoom on the lower-right corner is shown on the right. The bottom block of this matrix corresponds to the discrete equations derived from the DtN
boundary condition. These involve the values at the ”ghost” points and all grid points on the artificial boundary.

For the circular cylindrical case, the far-field pattern can be obtained by substituting the above expansion (7.2)
into the analytical solution (3.10). This yields

f(θ, k) =
Λ(1 + i)

4
√

π

∞
∑

n=0

ǫninCnH(1)
n (kL) cos n(θ − φ). (7.3)

On the other hand, for the numerical treatment, substitution of the asymptotic expansions of the Hankel functions
(7.2) into the semi-analytical solution (4.1) inΩfar leads to

f(θ, k) =
(1 − i)

2π
√

π

∞
∑

n=0

ǫn(−i)n

H
(1)
n (kR)

∫ 2π

0

usc(R, θ̄) cos n(θ − θ̄)dθ̄. (7.4)

Approximations can be obtained from (7.3) and (7.4) by employing a finite number of terms of the infinite series
and by using the trapezoidal rule for the integrals. We stress the importance that the far-field pattern is a function ofk
as much as it is ofθ. The effective wave numberk has embedded the values of the damping and stiffness coefficients.
So, it is the far-field pattern what is analyzed in Section 8 to show the influence of energy dissipation and media
stiffness on the wave fields.

8. Validation and Results. In this section, the numerical method is first checked by comparing its approximate
solution with the exact solution for a benchmark problem. More specifically, comparisons are made for the far-field
pattern. After that, series of far-field patterns and near-field solutions, resulting from several values of damping and
stiffness coefficients, are presented.

8.1. Convergence of the Numerical Method. The benchmark problem for this work is the scattering from a
circular cylinder of radiusa = 1, and angular frequencyw = 2π. In the global Cartesian coordinates, the cylinder
is centered at the origin, and the source of strengthΛ = 50 is located at(xs, ys) = (−6, 0). This configuration is
equivalent to setφ = 0 andL = 6. For the numerical implementation,R = 2, N = 40, andTol = 1e− 6 are chosen.
The damping and stiffness coefficients are selected to represent all three wave regimes or cases. ForCase 1:A = 0
andB = 40, for Case 2:A = 0 andB = 5, and forCase 3:A = 1 andB = 5.

The error of the numerical solution is measured in terms of the maximum pointwise difference between the
far-field pattern obtained analytically and numerically from Equations (7.3) and (7.4), respectively. To analyze the
convergence of the numerical method, the grids are refined by increasingN1 while keepingN1 = 4N2. The error
versusN1 is shown in Figure 8.1. These results corroborate the second order convergence expected from the finite-
difference scheme.
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FIG. 8.1. Themaximumabsolute error for the numerically computed far-field pattern vs. the number of grid pointsN1 = 4 N2. Scattering
from a circular cylinder of radiusa = 1 and frequencyω = 2π. Results for both soft (left) and hard (right) cylinders. The damping and stiffness
coefficients are selected to represent all three wave regimes or cases. ForCase 1:A = 0 andB = 40, for Case 2:A = 0 andB = 5, and for
Case 3:A = 1 andB = 5.

8.2. Energy Dissipation and Media Stiffness. First, the solutions for the wave scattering from a circular cylin-
der for various values of the damping and stiffness coefficients are displayed. These results are obtained from the
analytical expression (7.3) of the far-field pattern. Figures 9.1 and 9.2 (soft and hard cylinders, respectively) show how
the far-field changes as the damping coefficientA increases, while keepingB = 0. As expected, the amplitude of the
pattern decreases in all directions due to energy dissipation. However, its shape remains approximately the same. On
the other hand, Figures 9.3 and 9.4 show the variations of the far-field pattern as the stiffness coefficientB increases,
while keepingA = 0. In this case, the shape of the pattern is transformed as its dependence on the angleθ changes.
The amplitude becomes larger in some directions and smaller in others.

Secondly, variations of the far-field pattern with respect to damping and stiffness coefficients are also obtained for
a three-cusp Astroid. The results are obtained from Equation (7.4). The calculations are performed with the following
fixed parameters:c = 1, ω = 2π, φ = 0, L = 6, R = 2, N = 40, Tol = 1e − 6, and grid size180 × 30. The
Figures 9.5 and 9.6 show the influence of the damping coefficient for the hard and soft cylinders, respectively. Also,
Figures 9.7 and 9.8 display the amplitude variations due to stiffness. Again, energy dissipation does not change the
shape of the far-field pattern but only its amplitude, while media stiffness affects both, the amplitude and the pattern
dependence on the angular directionθ.

The amplitude of the wave field in the vicinity of the scatterer is also an important element of the solution. For that
reason, contour representations of the amplitude of the total field have been included. These are displayed in Figure
9.9 for increasing values of damping and in Figure 9.10 for increasing values of stiffness. In both cases, the cylinder
with soft surface is considered. The counterparts for the hard surface are shown in Figures 9.11 and 9.12, respectively.
For these experiments, a larger computational domain withR = 3 (grid size:180 × 60) has been chosen in order to
visualize the wave fields in an extended region around the scatterer.

The contour representations of the solution include a color scale of the wave amplitude. This helps to distinguish
how the field amplitude is attenuated as the damping coefficient increases, and how the wavelength becomes larger as
the stiffness coefficient is incremented. In the limiting case, whenB becomes too large, the spatial oscillatory profile
is lost as it was described in Section 3.

One of the main features of the proposed numerical scheme is its computational feasibility. The major computa-
tional effort consists of two numerical processes. First, the grid generation process based on the point-SOR iterative
method. Second, the numerical solution of the matrix equation to obtain the discrete values ofusc. MATLAB uses a
direct method based on LU-decomposition by Gaussian elimination with pivoting. This algorithm has worked accu-
rately for the medium size matrices involved in the numerical scattering problem. The number of SOR iterations and
the CPU execution time are displayed in Table 8.1 for the scattering from the three-cusp Astroid cylinder supported by
increasingly finer curvilinear grids. Our code was written in MATLAB R2007a environment and executed on a Mac
PowerPC G5 (1.1) with CPU speed of 2.5 GHz.
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TABLE 8.1
Numerical results for the scattering from a three-cusp Astroid obstacle. Grids are

generated withTol = 1e − 6 andR = 2.

Grid-size SOR-iter Grid generation Linear system
CPU time(sec) CPU time (sec)

60 × 10 108 0.14 0.03
120 × 20 172 0.73 0.15
180 × 30 350 2.98 0.42
240 × 40 577 8.68 0.95

9. Conclusion. We have studied the time-harmonic wave scattering from cylindrical obstacles. To account for
damping and media stiffness, the governing relation of the mathematical model is the telegraph equation. A numerical
method was developed for arbitrarily shaped cylindrical obstacles. The most important features of the proposed
numerical scheme may be summarized as follows:

(i) It has second order convergence to the exact solution for the circular cylindrical obstacle (soft and hard).
Moreover, it reproduces the physical behavior observed from the exact solution for all the three cases de-
scribed in Section 3. The numerical far-field pattern shows the same dependence on the dampingA and the
stiffnessB coefficients, as the far-field obtained from the analytical solution does.

(ii) Scattering from truly arbitrary obstacles can be numerically modeled due to the re-formulation of the problem
in generalized curvilinear coordinates supported on Winslow elliptic grids. These meshes conform to the
geometry of the obstacle. There is no need for staircase approximations which introduce additional error.

(iii) The exact DtN non-reflecting boundary condition was also reformulated in terms of generalized curvilinear
coordinates and used as an exterior boundary condition for the BVP to be solved numerically. As a con-
sequence, the computational domain is greatly reduced while the numerical method maintains its accuracy.
Additionally, the far-field pattern is easily obtained from the algebraic expressions of the DtN condition.

This work is being extended to the treatment of several scatterers supported by elliptic grids of higher quality.
This extension shall be presented in a forthcoming paper.
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FIG. 9.1. Far-field patterns corresponding to the soft circular
cylinder for various values of damping coefficientA, while keeping
B = 0.
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FIG. 9.2. Far-field patterns corresponding to the hard circular
cylinder for various values of damping coefficientA, while keeping
B = 0.
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FIG. 9.3. Far-field patterns corresponding to the soft circular
cylinder for various values of stiffness coefficientB, while keeping
A = 0.

  2

  4

  6

  8

30

210

60

240

90

270

120

300

150

330

180 0

 

 
B = 0
B = 10
B = 20

FIG. 9.4. Far-field patterns corresponding to the hard circular
cylinder for various values of stiffness coefficientB, while keeping
A = 0.
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FIG. 9.5. Far-field patterns corresponding to the soft three-cusp
Astroid cylinder for various values of damping coefficientA, while
keepingB = 0.
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FIG. 9.6.Far-field patterns corresponding to the hard three-cusp
Astroid cylinder for various values of damping coefficientA, while
keepingB = 0.
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FIG. 9.7. Far-field patterns corresponding to the soft three-cusp
Astroid cylinder for various values of stiffness coefficientB, while
keepingA = 0.
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FIG. 9.8. Far-field patterns corresponding to the hard three-
cusp Astroid cylinder for various values of stiffness coefficientB, while
keepingA = 0.
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FIG. 9.9. Amplitude of the totalwave field in the vicinity
of the soft three-cusp Astroid cylinder. From top to bottomA =

0.0, 0.1, 0.2, while keepingB = 0.
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FIG. 9.10. Amplitude of total wavefield in the vicinity of the
soft three-cusp Astroid cylinder. From top to bottomB = 10, 20, 30,
while keepingA = 0.
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FIG. 9.11. Amplitude of the total wave field in the vicin-
ity of the hard three-cusp Astroid cylinder. From top to bottom
A = 0.0, 0.1, 0.2, while keepingB = 0.
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FIG. 9.12. Amplitude of the total wave field in the vicin-
ity of the hard three-cusp Astroid cylinder. From top to bottom
B = 10, 20, 30, while keepingA = 0.
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